PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 32 | 4 |
Tytuł artykułu

Effectiveness of Rhizobium inoculation on productivity of common bean (Phaseolus vulgaris L.): investigating the effect of indigenous rhizobia population

Autorzy
Treść / Zawartość
Warianty tytułu
PL
Wpływ inokulacji Rhizobium na produktywność fasoli zwyczajnej (Phaseolus vulgaris L.). Poszukiwanie wpływu rdzennych populacji Rhizobium na ten czynnik
Języki publikacji
EN
Abstrakty
EN
This study was conducted to evaluate the effect of rhizobial population on the effectiveness of locally isolated elite isolates of Rhizobium on common bean at the major growing area of Eastern Ethiopia. The result showed significant effect of inoculation, the varieties and their interaction on nodulation, yield and yield traits, except for the number of seed per pod. Most of tested Rhizobium isolates significantly improved the nodule number and nodules dry weight in all soils regardless of rhizobial population. Significant increase in total biomass yield and grain yield of common bean was recorded with NSCBR-14, inorganic N-fertilized and NSCBR-(25)₂ treatments in soil with a high, low and moderate rhizobial population, respectively. The highest values of most of the yield traits including NN and NDW in all experimental sites was recorded with Dursitu variety but the highest values GY and TBY with Kufanzik. Hence, the indigenous rhizobial population did not affect the effectiveness of inoculation but the soil types and varieties affect the effectiveness of the isolates.
PL
Badania przeprowadzono w celu określenia wpływu populacji Rhizobium, lokalnie wyizolowanych elitarnych izolatów Rhizobium, na produkcyjność fasoli zwyczajnej w głównym obszarze upraw wschodniej Etiopii. Uzyskane wyniki wskazują na istotny wpływ szczepienia odmian i ich interakcji na wykształcenie brodawek korzeniowych, plon i jego cechy, z wyjątkiem liczby nasion w strąku. Większość badanych izolatów Rhizobium istotnie zwiększyła liczbę brodawek i suchą masę brodawek we wszystkich glebach, niezależnie od populacji Rhizobium. Istotny wzrost ogólnego plonu biomasy i plonu nasion fasoli zwyczajnej zaobserwowano odpowiednio z użyciem NSCBR-14, nieorganicznego nawożenia azotem i NSCBR-(25)₂ w glebie z dużą, małą i średnią populacją Rhizobium. Najwyższe wartości większości cech wydajności plonu, w tym NN i NDW we wszystkich miejscach badań, wykazano dla odmiany Dursitu, a najwyższe wartości GY i TBY stwierdzono dla odmiany Kufanzik. W związku z tym rdzenna populacja Rhizobium nie wpływała na efektywność inokulacji, ale typy gleb i odmiany działały na skuteczność izolatów.
Wydawca
-
Rocznik
Tom
32
Numer
4
Opis fizyczny
p.593-614,fig.,ref.
Twórcy
autor
  • School of Natural Resources Management and Environmental Sciences, College of Agriculture and Environmental Sciences, Haramaya University, Box-138, Dire Dawa, Dire Dawa, Ethiopia
autor
  • School of Plant Sciences, College of Agriculture and Environmental Sciences, Haramaya University in Dire Dawa, Dire Dawa, Ethiopia
Bibliografia
  • ABENDROTH L.J., ELMORE R.W., FERGUSON R.B. 2006. Soybean inoculation: Applying the facts to your fields, http://www.ianrpubs.unl.edu/epublic/pages/publicationD.jsp?publicationId=528 (verified 20 Sep. 2011). Univ. of Nebraska-Lincoln, Lincoln, access: 11.03.2017.
  • AMARE A. 1988. Effect of inoculation and nitrogen fertilization on yield of common bean in Ethiopia. In: Proceedings of a workshop on bean research in Eastern Africa. Ed. R.A. Kirkby. Mukono, Uganda, CIAT Africa workshop series no. 2.
  • ARGAW A., MEKONNEN E., MULETA D. 2015. Agronomic efficiency of N of common bean (Phaseolus vulgaris L.) in some representative soils of Eastern Ethiopia. Cogent Food and Agriculture 1: 1074790.
  • ARGAW A. 2016. Effectiveness of Rhizobium inoculation on common bean productivity as determined by inherent soil fertility status. J. Crop Sci. Biotechnol., 19(4): 311–322.
  • BERG R.K., LOYNACHAN T.E., ZABLOTOWICZ R.M., LIEBERMAN M.T. 1988. Nodule occupancy by introduced Bradyrhizobium japonicum in Iowa soils. Agro. J., 80: 876–881.
  • BEYENE D., KASSA S., AMPY F., ASSEFFA A., GEBREMEDHIN T., VAN BERKUM P. 2004. Ethiopian soils harbor natural populations of rhizobia that formsymbioses with common bean (Phaseolus vulgaris L.). Arch. Microbiol., 181: 129–136.
  • BREMNER J.M. 1965. Inorganic Forms of Nitrogen. In: Methods of soil analysis. Ed. C.A. Black et al. Part 2, 2nd ed., Agron. Monogr. 9. ASA and SSSA, Madison, WI.
  • BUTTERY B.R., PARK S.J., FINDLAY W.J. 1987. Growth and yield of white bean (Phaseolus vulgaris L.) in response to nitrogen, phosphorus and potassium fertilizer and to inoculation with Rhizobium. Can. J. Plant Sci., 67: 425–432.
  • BUTTERY B.R., PARK S.J., VAN BERKUM P. 1997. Effects of common bean (Phaseolus vulgaris L.) cultivar and rhizobium strain on plant growth, seed yield and nitrogen content. Can. J. Plant Sci., 77: 347–351.
  • CHEMINING’WA G.N., THEURI S.W.M., MUTHOMI J.W. 2011. Abundance of indigenous rhizobia nodulating cowpea and common bean in central kenyan soils. Afr. J. Horti. Sci., 5: 92–97.
  • CHEMINING’WA G.N., VESSEY K.J. 2006. The abundance and efficacy of Rhizobium leguminosarum bv. viciae in cultivated soils of the eastern Canadian prairie. Soil Biol. Biochem., 38: 294–302.
  • CSA. 2015. The federal democratic republic of Ethiopia central statistical agency agricultural sample survey 2014/2015. Area and production of major crops (Private peasant holdings, Meher season). Addis Ababa, Ethiopia, pp. 19.
  • DE BRUIN J.L., PEDERSEN P., CONLEY S.P., GASKA J.M., NAEVE S.L., KURLE J.E., ELMORE R.W., GIESLER L.J., ABENDROTH L.J. 2010. Probability of yield response to inoculants in fields with a history of soybean. Crop Sci., 50: 265–272.
  • ELIAS N.V., HERRIDGE D.F. 2015. Naturalised populations ofmesorhizobia in chickpea (Cicer arietinum L.) cropping soils: effects on nodule occupancy and productivity of commercial chickpea. Plant Soil, 387: 233–249.
  • FERREIRA M.C., HUNGRIA M. 2002. Recovery of soybean inoculant strains from uncropped soils in Brazil. Field Crop Res., 79: 139–152.
  • FURSETH B.J., CONLEY S.P., ANÉ J.M. 2011. Soybean response to rhizobia on previously flooded sites in southern Wisconsin. Agron. J., 103: 573–576.
  • FURSETH B.J., CONLEY S.P., ANÉ J.M. 2012. Soybean response to soil Rhizobia and seed-applied Rhizobia inoculants in Wisconsin. Crop Sci., 52: 339–344.
  • GARCÍA J.A.L., PROBANZA A., RAMOS B., BARRIUSO J., MAÑERO F.J.G. 2004. Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant Soil, 267: 143–153.
  • GETHI M., MURIITHI F.M., MACHARIA N., NJOROGE K. 1997. Maize/bean intercropping system in medium potential area of Kenya. Farmer’s Practice and Research Challenges. Afr. Crop Sci J., 3: 756–770.
  • GRAHAM P.H. 1981. Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crops Res., 4: 93–112.
  • GRAHAM P.H., ROSAS J.C. 1977. Growth and development of indeterminate bush and climbing cultivars of Phaseolus vulgaris L. J. Agric. Sci., 88: 503–508.
  • GRANGE L., HUNGRIA M., GRAHAM P.H., MARTI´NEZ-ROMERO E. 2007. New insights into the origins and evolution of rhizobia that nodulate common bean (Phaseolus vulgaris) in Brazil. Soil Biol. Biochem., 39: 867–876.
  • HARDARSON G. 1993. Methods for enhancing symbiotic nitrogen fixation. Plant Soil, 152: 1–17.
  • HERRIDGE D., ROSE I. 2000. Breeding for enhanced nitrogen fixation in crop legumes. Field Crops Res., 65: 229–248.
  • HOWIESON J.G., BALLARD R. 2004. Optimising the legume symbiosis in stressful and competitive environments within southern Australia – some contemporary thoughts. Soil Biol. Biochem., 36: 1261–1273.
  • HUBBELL D.H. 1995. Extension of symbiotic biological nitrogen fixation technology in developing countries. Fertil. Res., 42: 231–239.
  • HUNGRIA M., ANDRABE D.S., CHUIRE L.M.O., AGUSTIN P., FRANCISCO J.G.M., MEGIAS M. 2000. Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol. Biochem., 32: 1515–1528.
  • HUNGRIA M., CAMPO R.J., MENDES I.C. 2003. Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol. Fertil. Soils, 39: 88–93.
  • HUNGRIA M., VARGAS M.A.T., ARAUJO R.S. 1997. Fixa o biolgicadonitrog Pnioemfeijoeiro. In: Biologia dos solos dos cerrados. Eds. M.A.T. Vargas, M. Hungria. EMBRAPA-CPAC, Planaltina, pp. 189–295.
  • KARLTUN E., LEMENIH M., TOLERA M. 2013. Comparing farmers’ perception of soil fertility change with soil properties and crop performance in Beseku, Ethiopia. Land Degrad. Dev., 24: 228–235.
  • MARTÍNEZ-ROMERO E. 2003. Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives. Plant Soil, 252: 11–23.
  • MEADE J.P.H., O’GARA F. 1985. Studies on the inoculation and competitiveness of a Rhizobium leguminosarum strain in soils containing indigenous rhizobia. Appl. Environ. Microbiol., 49: 899–903.
  • MEKBIB F. 2003. Yield stability in common bean (Phaseolus vulgaris L.) varieties. Euphytica, 130: 147–153.
  • MENDES I.C., SUHET A.R., PERES J.R.R., VARGAS M.A.T. 1994. EficiWnciafixadora de estirpes de rizbioemduascultivares de feijoeiro. Rev. Bras. Cięnc., Solo, 18: 1–5.
  • MICHIELS J., DOMBRECHT B., VERMEIREN N., XI C., LUYTEN E., VANDERLEYDEN J. 1998. Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol. Ecol., 26: 193–205.
  • MOSTASSO L., MOSTASSO F.L., DIAS B.G., VARGAS M.A.T., HUNGRIA M. 2002. Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crops Res., 73: 121–132.
  • MRABET M., MHAMDI R., TAJINI F., TIWARI R., TRABELSI M., AOUANI M.E. 2005. Competitiveness and symbiotic effectiveness of Rhizobium gallicum strain isolated from root nodule of Phaseolus vulgaris. Eur. J. Agron., 22: 209–216.
  • MULAS D., GARCÍA-FRAILE P., CARRO L., RAMÍREZ-BAHENA M.H., VELÁZQUEZ E., GONZÁLEZ-ANDRÉS F. 2011. Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in Northern Spanish soils: Selection of native strains that replace conventional N fertilization. Soil Biol. Biochem., 43: 2283–2293.
  • NDAKIDEMI P.A., DAKORA F.D., NKONYA E.M., RINGO D., MANSOOR H. 2006. Yield and economic benefits of common bean (Phaseolus vulgaris) and soybean (Glycine max) inoculation in northern Tanzania. Aust. J. Exp. Agric., 46: 571–577.
  • NSSP. 1989. Biological nitrogen fixation studies in Hararghe region. National Soil Survey Project, Addis Ababa, Ethiopia.
  • PENA-CABRIALES J.J., ALEXANDER M. 1979. Survival of Rhizobium in soils undergoing drying. Soil Sci. Soc. Am. J., 43: 962–966.
  • PEREIRA P.A.A., ARAUJO R.S., ROCHA R.E.M., STEINMETZ S. 1984. Capacidade dos gentipos de feijoeiro de fixar N atmosfrico. Pesqui. Agropecu. Bras., 19: 811–815.
  • PERES J.R.R., SUHET A.R., MENDES I.C., VARGAS M.A.T. 1994. Efeito da inocula o com rizbio e da aduba o nitrogenadaemsetecultivares de feijo em solos de Cerrados. Rev. Bras. Cięnc. Solo, 18: 1–6.
  • RAPOSEIRAS R., MARRIEL I.E., MUZZI M.R.S., FILHO I.A.P., CARVALHAIS L.C., PAIVA E., PASSOS R.V.M., PINTO P.P., DE SÁ N.M.H. 2006. Rhizobium strains competitiveness on bean nodulation in Cerrado soils. Pesqui. Agropecu. Bras., 41 (3): 439–447.
  • REMANS R., RAMAEKERS L., SCHELKENS S., HERNANDEZ G., GARCIÁ A., REYES J.L., MENDEZ N., TOSCANO V.,
  • MULLING M., GALVEZ L., VANDERLEYDEN J. 2008. Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. varieties cultivated across different environments in Cuba. Plant Soil, 312: 25–37.
  • RUIZ DIAZ D.A., PEDERSEN P., SAWYER J.E. 2009. Soybean Response to Inoculation and Nitrogen Application Following Long-Term Grass Pasture. Crop Sci., 49: 1058–1062.
  • SÁN.M.H. 2001. Seasonal dynamic of Native rhizobial populations associated with Arachis pintoi in Cerrado soils. Pasturas Tropicales, 23: 29–31.
  • SADOWSKY M.J., GRAHAM P.H. 1998. Soil biology of the Rhizobiaceae. In: The Rhizobiaceae- molecular biology of model plant/associated bacteria. Eds. H.P. Spaink, A. Kondorosi, P.J.J Hooykaas. Kluwer, Dordrecht, pp. 155–172.
  • SAHILEMEDIN S., TAYE B. 2000. Procedure for soil and plant analysis. National Soil Research Center, Ethiopian Agricultural Research Organization, Addis Abeba.
  • SAS INSTITUTE. 1999. STATVIEW. SAS Institute, Inc., Cary, North Carolina.
  • SCHULZ T.J., THELEN K.D. 2008. Soybean seed inoculant and fungicidal seed treatment effects on soybean. Crop Sci., 48: 1975–1983.
  • SEGOVIA L., PINERO D., PALACIOS R., MARTÍNEZ-ROMERO E. 1991. Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl. Environ. Microbiol., 57: 426–433.
  • SESSITSCH A., HOWIESON J.G., PERRET X., ANTOUN H., MARTINEZ-ROMERO E. 2002. Advances in Rhizobium research. CRC Crit. Rev. Plant. Sci., 21: 323–378.
  • SESSITSCH A., HARDARSON G., DE VOS W.M., WILSON K.J. 1998. Use of marker genes in competition studies of Rhizobium. Plant Soil, 204: 35–45.
  • SILVA P.M.D., TSAI S.M., BONETTI R. 1993. Response to inoculation and N fertilization for increased yield and biological nitrogen fixation of common bean (Phaseolus vulgaris L.). Plant Soil, 152: 123–130.
  • SINGLETON P.W., TAVARES J.W. 1986. Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium populations. Appl. Environ. Microbiol., 51: 1013–1018.
  • TAJINI F., DREVON J.J., LAMOUCHI L., AOUANI M.E., TRABELSI M. 2008. Response of common bean lines to inoculation: comparison between the Rhizobium tropici CIAT899 and the native Rhizobium etli 12a3 and their persistence in Tunisian soils. World J. Microbiol. Biotechnol., 24: 407–417.
  • THIES J.E., SINGLETON P.W., BOHLOOL B.B. 1991. Modeling symbiotic performance of introduced rhizobia in the field by use of indices of indigenous population size and nitrogen status of the soil. Appl. Environ. Microbiol., 57: 29–37.
  • VINCENT J. M. 1970. A Manual for the Practical Study of Root Nodule Bacteria. Oxford: Blackwell Scientific.
  • VLASSAK K., VANDERLEYDEN J., FRANCO A.A. 1996. Competition and persistence of Rhizobium etli in tropical soil during successive bean (Phaseolus vulgaris L.) cultures. Biol. Fertil. Soils, 21: 61–68.
  • WILLIAMS L.E., PHILLIPS D.A. 1983. Increased soybean productivity with Rhizobium japonicum mutant. Crop Sci., 23: 246–250.
  • WORTMANN C., KIRKBY R., ELEDU C., ALLEN D. 1998. Atlas of common bean (Phaseolus vulgaris L.) production in Africa. CIAT, Cali, Columbia, pp. 103–106.
  • YADEGARI M., RAHMANI H.A., NOORMOHAMMADI G., AYNEBAND A. 2010. Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. J. Plant Nutr., 33(12): 1733–1743.
  • ZENG Z., CHEN W., HU Y., SUI X., CHEN D. 2007. Screening of highly effective Sinorhizobium meliloti strains for “Vector” alfalfa and testing of its competitive nodulation ability in the field. Pedosphere, 17: 219–228.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3282dc58-3b63-4f99-b687-99b35cb248c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.