Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 76 |
Tytuł artykułu

Climate and growth of Podocarpus salignus in Valdivia, Chile

Treść / Zawartość
Warianty tytułu
Języki publikacji
Little dendroclimatic research has been conducted on species of Podocarpus, in response to inherent difficulties associated with tree-ring differentiation and cross-dating. We sampled complete stem cross sections from a plantation of Podocarpus salignus trees in Valdivia, Chile, near the southern edge of the species’ range. We measured earlywood, latewood, and total ring widths avoiding ring wedging, and we calculated the corresponding chronologies. The relationship of these chronologies with maximum temperature, precipitation, and sea level pressure was addressed using correlation and redundancy analyses. All chronologies showed a similar response to climate that was consistent with the cloudy, rainy, and temperate conditions of the study area. That is, warm and dry conditions during previous late springs were beneficial, while warm and rainy winters under low atmospheric pressures were detrimental for growth. The observed climatic responses are in contrast to those of conifers from mountainous areas of southern South America. Limitation of carbohydrates available for growth in the following active season was a possible cause for the observed responses to climate. That is, high winter temperatures may deplete stored carbohydrates by increasing respiration, and a high degree of cloud cover reduces the radiation received by the trees in the active season, which may hamper photosynthesis. Our work highlights the dendroclimatological value of Podocarpus salignus to investigate the influence of climatic variation on tree growth and forest productivity.
Opis fizyczny
  • Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
  • Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
  • Instituto de Geografía, Facultad de Ciencias del Mar y Geografía, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso, Chile
  • Instituto de Geografía, Facultad de Ciencias del Mar y Geografía, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso, Chile
  • Aravena JC (2007) Reconstruction of climate variability from tree-ring records and glacier fluctuations in the southern Chilean Andes. Ph.D. Geography (Environmental Sciences) University of Western Ontario, London-Ontario, Canada.
  • Aravena JC & Luckman BH (2009) Spatio-temporal rainfall patterns in Southern South America. International Journal of Climatology 29: 2106–2120.
  • Bauch J, Quiros L, Noldt G & Schmidt P (2006) Study on the wood anatomy, annual wood increment and intra-annual growth dynamics of Podocarpus oleifolius var. macrostachyus from Costa Rica. Journal of Applied Botany and Food Quality 80: 19–24.
  • Biffin E, Conran JG & Lowe AJ (2011) Podocarp evolution, a molecular phylogenetic perspective: Ecology of the Podocarpaceae in tropical forests (ed. by BL Turner & LA Cernusak) Smithsonian Contributions to Botany, number 95, Smithsonian Institution Scholarly Press, Washington, D.C.
  • Braak CJF ter & Šmilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (Version 4). Center for Biometry Wageningen and Microcomputer Power, Ithaca, NY.
  • Cook ER & Holmes RL (1996) Guide for computer program ARSTAN: The international tree ring data bank program library version 2.0 user’s manual (ed. by HD Grissino-Mayer, RL Holmes & HC Fritts) Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USA, pp. 75–87.
  • Dunwiddie PW (1979) Dendrochronological studies of indigenous New Zealand trees. New Zealand Journal of Botany 17: 251–266.
  • Farjon A (2001) World checklist and bibliography of conifers. 2nd ed. Kew Royal Botanic Gardens.
  • Farjon A & Page CN (1999) Conifers. Status survey and conservation action plan. IUCN/SSC Conifer Specialist Group, IUCN, Gland, Switzerland and Cambridge, UK.
  • February EC & Stock WD (1998) An assessment of the dendrochronological potential of two Podocarpus species. The Holocene 8: 747–750.
  • Gerding V, Geldres E & Moya JA (2006) Diagnóstico del desarrollo de Pinus massoniana y Pinus brutia establecidos en el arboreto de la Universidad Austral de Chile, Valdivia. Bosque 27: 57–63.
  • González-Reyes A & Muñoz AA (2013) Cambios en la precipitación de la ciudad de Valdivia (Chile) durante los últimos 150 años. Bosque 34: 200–213.
  • Graham EA, Mulkey SS, Kitajima K, Phillips NG & Wright SJ (2003) Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proceedings of the National Academy of Sciences USA 100: 572–576.
  • Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research 57: 205–221.
  • Guay R, Gagnon R & Morin H (1992) A new automatic and interactive tree-ring measurement system based on a line scan camera. The Forestry Chronicle 68: 138–141.
  • Hechenleitner P, Gardner MF, Thomas PI, Echeverría C, Escobar B, Brownless P & Martínez C (2005) Plantas Amenazadas del Centro-Sur de Chile.
  • Distribución, Conservación y Propagación. 1st ed. Universidad Austral de Chile y Real Jardín Botánico de Edimburgo.
  • Kelch DG (1997) The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113–131.
  • Krepkowski J, Bräuning A & Gebrekirstos A (2012) Growth dynamics and potential for cross-dating and multi-century climate reconstruction of Podocarpus falcatus in Ethiopia. Dendrochronologia 30: 257–265.
  • Krepkowski J, Braüning A, Gebrekirstos A & Strobl S (2011) Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees 25: 59–70.
  • Lamprecht AM (1984) Dendroklimatologische Untersuchungen in Südamerika. Swiss Federal Institute of Forestry Research Report 263, Birmensdorf, Switzerland.
  • Legendre P & Legendre L (1998) Numerical ecology, 2nd English edn. Developments in Environmental Modelling, number 20. Elsevier, Amsterdam.
  • Le Quesne C, Stahle D, Cleaveland M, Therrell M, Aravena JC & Barichivich J (2006) Ancient Austrocedrus tree-ring chronologies used to reconstruct Central Chile precipitation variability from A.D. 1200 to 2000. Journal of Climate 19: 5731–5744.
  • Mäkinen H, Nöjd P, Kahle HP, Neumann U, Tveite B, Mielikäinen K, Röhle H & Spiecker H (2002) Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Forest Ecology and Management 171: 233–249.
  • McDougall KL, Brookhouse MT & Broome LS (2012) Dendroclimatological investigation of mainland Australia’s only alpine conifer, Podocarpus lawrencei Hook. Dendrochronologia 30: 1–9.
  • Min Q & Wang S (2008) Clouds modulate terrestrial carbon uptake in a midlatitude hardwood forest. Geophysical Research Letters 35: L02406. doi:10.1029/2007GL032398.
  • Muñoz AA, Barichivich J, Christie DA, Dorigo W, Sauchyn D, González-Reyes A, Villalba R, Lara A, Riquelme N & González ME (2014) Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: linking tree-rings with satellite observations of soil moisture. Austral Ecology 39: 158–169.
  • Norton DA & Ogden J (1990) Problems with the use of tree rings in the study of forest population dynamics: Methods of dendrochronology – applications in the environmental sciences (ed. by ER Cook & LA Kairiukstis) Kluwer Academic Publishers, Dordrecht, pp. 284–288.
  • Norton DA, Palmer JG & Ogden J (1987) Dendroecological studies in New Zealand 1. An evaluation of tree age estimates based on increment cores. New Zealand Journal of Botany 25: 373–383.
  • Ögren E (1997) Relationship between temperature, respiratory loss of sugar and premature dehardening in dormant Scots pine seedlings. Tree Physiology 17: 47–51.
  • Peterson DW & Peterson DL (2001) Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology 82: 3330–3345.
  • Rathgeber CBK, Rossi S & Bontemps JD (2011) Cambial activity related to tree size in a mature silver-fir plantation. Annals of Botany 108: 429–438.
  • Rodríguez R, Matthei O & Quezada M (1983) Flora arbórea de Chile. Editorial de la Universidad de Concepción, Universidad de Concepción, Chile.
  • Rozas V, García-González I, Pérez-de-Lis G & Arévalo JR (2013) Local and large-scale climatic factors controlling tree-ring growth of Pinus canariensis on an oceanic island. Climate Research 56: 197–207.
  • Rozas V, Zas R & García-González I (2011) Contrasting effects of water availability on Pinus pinaster radial growth near the transition between the Atlantic and Mediterranean biogeographical regions in NW Spain. European Journal of Forest Research 130: 959–970.
  • Speer JH (2010) Fundamentals of Tree Ring Research. University of Arizona Press, Tucson, AZ, USA.
  • Sweda T & Inoue J (1987) Dendrochronologies of San Rafael and Soler areas, Patagonia. Bulletin of Glacier Research 4: 125–132.
  • Thomsen G (2001) Response to winter precipitation in ring-width chronologies of Pinus sylvestris L. from the northwestern Siberian plain, Russia. Tree-Ring Research 57: 15–29.
  • Wells JA (1972) Ecology of Podocarpus hallii in Central Otago, New Zealand. New Zealand Journal of Botany 10: 399–426.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.