Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 76 | 4 |

Tytuł artykułu

Upregulation of CCL3/MIP-1alpha regulated by MAPKs and NF-kappaB mediates microglial inflammatory response in LPS-induced brain injury

Warianty tytułu

Języki publikacji



Growing evidence suggests that macrophage inflammatory protein (MIP)‑1alpha (synonym CCL3) is upregulated in the neuroinflammatory processes initiated by some brain disorders, but its precise role and regulatory mechanism remain unclear. The present work aims to evaluate the role of CCL3/MIP‑1alpha in lipopolysaccharide (LPS)‑induced brain injury, and investigate whether the MAPKs and NF‑kappaB regulate CCL3/MIP‑1alpha expression. We firstly examined the patterns of CCL3/MIP‑1alpha expression and phosphorylation of MAPKs in the brains of rats 6, 24, and 72 h after LPS administration. Additionally, LPS‑treated rats were administered an anti‑MIP‑1alpha neutralizing antibody, and the microglial reaction and the expression of both cyclooxygenase‑2 and inducible nitric oxide synthase (iNOS) were analyzed. We finally evaluated the effect of an inhibitor of P38 MAPK, an inhibitor of ERK1/2, or an inhibitor of NF‑kappaB, on the levels of CCL3/MIP‑1alpha protein and numbers of microglia in the brain. In the observation period, LPS induced CCL3/MIP‑1alpha expression, which localized to OX‑42‑labeled microglia, leading to time‑dependent increases in the phosphorylation of P38 MAPK and ERK1/2. The expression pattern of induced CCL3/MIP‑1alpha was partly consistent with the phosphorylation of MAPKs (P38 MAPK, ERK1/2). Anti‑MIP‑1alpha attenuated microglial accumulation and the upregulation of cyclooxygenase‑2 and iNOS. The inhibition of P38 MAPK, ERK1/2, or NF‑kappaB signaling reduced the induced upregulation of CCL3/MIP‑1alpha and the microglial accumulation. Our data suggest that upregulated CCL3/MIP‑1alpha mediates the accumulation of microglia and the neuroinflammatory reaction, and its expression may be regulated by MAPKs and NF‑kappaB in LPS‑induced brain injury.

Słowa kluczowe








Opis fizyczny



  • Department of Pediatrics, Second Hospital of Shandong University, Jinan, China
  • Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
  • Department of Pediatrics, Second Hospital of Shandong University, Jinan, China
  • Department of Pediatrics, Second Hospital of Shandong University, Jinan, China
  • Department of Pediatrics, Second Hospital of Shandong University, Jinan, China
  • Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Jinan, China
  • Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
  • Department of Pediatrics, Second Hospital of Shandong University, Jinan, China


  • Bianchi R, Kastrisianaki E, Giambanco I, Donato R (2011) S100B protein stimulates microglia migration via RAGE‑dependent up‑regulation of chemokine expression and release. J Biol Chem 286: 7214–7226.
  • Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354: 610–621.
  • Davis S, Vanhoutte P, Pages C, Caboche J, Laroche S (2000) The MAPK/ERK cascade targets both Elk‑1 and cAMP response element‑binding protein to control long‑term potentiation‑dependent gene expression in the dentate gyrus in vivo. J Neurosci 20: 4563–4572.
  • Diks SH, Richel DJ, Peppelenbosch MP (2004) LPS signal transduction: the picture is becoming more complex. Curr Top Med Chem 4: 1115–1126.
  • Duckworth EA, Butler T, Collier  L, Collier S, Pennypacker KR (2006) NF‑kappaB protects neurons from ischemic injury after middle cerebral artery occlusion in mice. Brain Res 1088: 167–175.
  • Etgen AM, Acosta‑Martinez M (2003) Participation of growth factor signal transduction pathways in estradiol facilitation of female reproductive behavior. Endocrinology 144: 3828–3835.
  • Ferrer I, Blanco R, Carmona  M (2001) Differential expression of active, phosphorylation‑dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates following quinolinic acid excitotoxicity in the rat. Brain Res Mol Brain Res 94: 48–58.
  • Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2: 108–115.
  • Gourmala NG, Limonta S, Bochelen D, Sauter A, Boddeke HW (1999) Localization of macrophage inflammatory protein: macrophage inflammatory protein‑1 expression in rat brain after peripheral administration of lipopolysaccharide and focal cerebral ischemia. Neuroscience 88: 1255–1266.
  • Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13: 85–94.
  • Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40: 140–155.
  • Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)‑induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5: 15.
  • Hinojosa AE, Garcia‑Bueno B, Leza JC, Madrigal JL (2011) CCL2/ MCP‑1 modulation of microglial activation and proliferation. J Neuroinflammation 8: 77.
  • Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IkappaB‑NF‑kappaB signaling module: temporal control and selective gene activation. Science 298: 1241–1245.
  • Hwang SY, Shin JH, Hwang JS, Kim SY, Shin JA, Oh ES, Oh S, Kim JB, Lee JK, Han IO (2010) Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusioninjury. Glia 58: 1881–1892.
  • Israelsson C, Kylberg A, Bengtsson H, Hillered  L, Ebendal T (2014) Interacting chemokine signals regulate dendritic cells in acute brain injury. PLoS One 9: e104754.
  • Karpus WJ, Lukacs NW, McRae BL, Strieter RM, Kunkel SL, Miller SD (1995) An important role for the chemokine macrophage inflammatory protein‑1 alpha in the pathogenesis of the T cell‑mediated autoimmune disease, experimental autoimmune encephalomyelitis. J Immunol 155: 5003–5010.
  • Kataoka A, Tozaki‑Saitoh H, Koga Y, Tsuda  M, Inoue K (2009) Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT. J Neurochem 108: 115–125.
  • Kim B, Jeong HK, Kim JH, Lee SY, Jou I, Joe EH (2011) Uridine 5’‑Diphosphate Induces Chemokine Expression in Microglia and Astrocytes through Activation of the P2Y6 Receptor. J Immunol 186: 3701–3709.
  • Kim EA, Cho CH, Kim J, Hahn HG, Choi SY, Yang SJ, Cho SW (2015) The azetidine derivative, KHG26792 protects against ATP‑induced activation of NFAT and MAPK pathways through P2X7 receptor in microglia. Neurotoxicology 51: 198–206.
  • Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802: 396–405.
  • Lee DC, Rizer J, Selenica ML, Reid P, Kraft C, Johnson A, Blair L, Gordon MN, Dickey CA, Morgan D (2010) LPS‑induced inflammation exacerbates phosphotau pathology in rTg4510 mice. J Neuroinflammation 7: 56.
  • Lenglet S, Montecucco F, Denes A, Coutts G, Pinteaux E, Mach F, Schaller K, Gasche Y, Copin JC (2014) Recombinant tissue plasminogen activator enhances microglial cell recruitment after stroke in mice. J Cereb Blood Flow Metab 34: 802–812.
  • Luster AD (1998) Chemokines – chemotactic cytokines that mediate inflammation. N Engl J Med 338: 436–445.
  • Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr (2001) Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF‑kappa B through utilization of the Ikappa B kinase and activation of the mitogen‑activated protein kinase p38. J Biol Chem 276: 18934–18940.
  • Mao SS, Hua R, Zhao XP, Qin X, Sun ZQ, Zhang Y, Wu YQ, Jia MX, Cao JL, Zhang YM (2012) Exogenous administration of PACAP alleviates traumatic brain injury in rats through a mechanism involving the TLR4/ MyD88/NF‑κB pathway. J Neurotrauma 29: 1941–1959.
  • Matsuyama  W, Wang  L, Farrar WL, Faure  M, Yoshimura T (2004) Activation of discoidin domain receptor 1 isoform b with collagen up‑regulates chemokine production in human macrophages: role of p38 mitogen‑activated protein kinase and NF‑kappa B. J Immunol 172: 2332–2340.
  • Morioka N, Tokuhara  M, Harano S, Nakamura Y, Hisaoka‑Nakashima  K, Nakata Y (2013) The activation of P2Y6 receptor in cultured spinal microglia induces the production of CCL2 through the MAP kinases‑NF‑κB pathway. Neuropharmacology 75: 116–125.
  • Nijboer CH, Heijnen CJ, Groenendaal F, May MJ, van Bel F, Kavelaars A (2008) A dual role of the NF‑kappaB pathway in neonatal hypoxic‑ischemic brain damage. Stroke 39: 2578–2586.
  • Nurmi A, Vartiainen N, Pihlaja R, Goldsteins G, Yrjänheikki J, Koistinaho J (2004) Pyrrolidine dithiocarbamate inhibits translocation of nuclear factor kappa‑B in neurons and protects against brain ischaemia with a wide therapeutic time window. J Neurochem 91: 755–765.
  • Park MH, Lee YK, Lee YH, Kim YB, Yun YW, Nam SY, Hwang SJ, Han SB, Kim SU, Hong JT (2009) Chemokines released from astrocytes promote chemokine receptor 5‑mediated neuronal cell differentiation. Exp Cell Res 315: 2715–2726.
  • Park OJ, Han JY, Baik JE, Jeon JH, Kang SS, Yun CH, Oh JW, Seo HS, Han SH (2013) Lipoteichoic acid of Enterococcus faecalis induces the expression of chemokines via TLR2 and PAFR signaling pathways. J Leukoc Biol 94: 1275–1284.
  • Passos GF, Figueiredo CP, Prediger RD, Pandolfo P, Duarte FS, Medeiros R, Calixto JB (2009) Role of the macrophage inflammatory protein‑1alpha/ CC chemokine receptor 5 signaling pathway in the neuroinflammatory response and cognitive deficits induced by beta‑amyloid peptide. Am J Pathol 175: 1586–1597.
  • Paxinos G, Watson C (2005) The Rat Brain in Stereotaxic Coordinates (5 ed.). Elsevier Academic Press, Burlington, USA. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen‑activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22: 153–183.
  • Qin  L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55: 453–462.
  • Raghavendra Rao VL, Dhodda VK, Song G, Bowen KK, Dempsey RJ (2003) Traumatic brain injury‑induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J  Neurosci Res 71: 208–219.
  • Raghupathi R, Muir JK, Fulp CT, Pittman RN, McIntosh TK (2003) Acute activation of mitogen‑activated protein kinases following traumatic brain injury in the rat: implications for posttraumatic cell death. Exp Neurol 183: 438–448.
  • Skuljec J, Sun H, Pul R, Bénardais K, Ragancokova D, Moharregh‑Khiabani D, Kotsiari A, Trebst C, Stangel M (2011) CCL5 induces a pro‑inflammatory profile in microglia in vitro. Cell Immunol 270: 164–171.
  • Soares DM, Figueiredo MJ, Martins JM, Machado RR, Kanashiro A, Malvar Ddo C, Pessini AC, Roth J, Souza GE (2009) CCL3/MIP‑1 alpha is not involved in the LPS‑induced fever and its pyrogenic activity depends on CRF. Brain Res 1269: 54–60.
  • Song X, Shapiro S, Goldman DL, Casadevall A, Scharff  M, Lee SC (2002) Fcr Receptor I‑ and III‑Mediated Macrophage Inflammatory Protein 1 Induction in Primary Human and Murine Microglia. Infect Immun 70: 5177–5184.
  • Sugino T, Nozaki K, Takagi Y, Hattori I, Hashimoto N, Moriguchi T, Nishida E (2000) Activation of mitogen‑activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci 20: 4506–4514.
  • Tanaka S, Kondo H, Kanda K, Ashino T, Nakamachi T, Sekikawa K, Iwakura Y, Shioda S, Numazawa S, Yoshida T (2011) Involvement of Interleukin‑1 in Lipopolysaccaride‑Induced Microglial Activation and Learning and Memory Deficits. J Neurosci Res 89: 506–514.
  • Tyagi E, Agrawal R, Nath C, Shukla R (2010) Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 640: 206–210.
  • Uesugi  M, Nakajima K, Tohyama Y, Kohsaka S, Kurihara T (2006) Nonparticipation of nuclear factor kappa B (NFkappaB) in the signaling cascade of c‑Jun N‑terminal kinase (JNK)‑ and p38 mitogen‑activated protein kinase (p38MAPK)‑dependent tumor necrosis factor alpha (TNFalpha) induction in lipopolysaccharide (LPS)‑stimulated microglia. Brain Res 1073–1074: 48–59.
  • van den Tweel ER, Kavelaars A, Lombardi MS, Groenendaal F, May  M, Heijnen CJ, van Bel F (2006) Selective inhibition of nuclear factor‑kappaB activation after hypoxia/ischemia in neonatal rats is not neuroprotective. Pediatr Res 59: 232–236.
  • van Loo G, De Lorenzi R, Schmidt H, Huth M, Mildner A, Schmidt‑Supprian M, Lassmann H, Prinz MR, Pasparakis M (2006) Inhibition of transcription factor NF‑kappaB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat Immunol 7: 954–961.
  • Wang HK, Park UJ, Kim SY, Lee JH, Kim SU, Gwag BJ, Lee YB (2008) Free radical production in CA1 neurons induces MIP‑1alpha expression, microglia recruitment, and delayed neuronal death after transient forebrain ischemia. J Neurosci 28: 1721–1727.
  • Wang X, Stridh  L, Li  W, Dean J, Elmgren A, Gan  L, Eriksson K, Hagberg  H, Mallard  C (2009) Lipopolysaccharide sensitizes neonatal hypoxic‑ischemic brain injury in a MyD88‑dependent manner. J Immunol 183: 7471–7477.
  • Xu JH, Long L, Tang YC, Zhang JT, Hut HT, Tang FR (2009) CCR3, CCR2A and macrophage inflammatory protein (MIP)‑1a, monocyte chemotactic protein‑1 (MCP‑1) in the mouse hippocampus during and after pilocarpine‑induced status epilepticus (PISE). Neuropathol Appl Neurobiol 35: 496–514.
  • Zhu XB, Wang YB, Chen O, Zhang DQ, Zhang ZH, Cao AH, Huang SY, Sun RP (2012) Characterization of the expression of macrophage inflammatory protein‑1α (MIP‑1α) and chemokine receptor CCR5 after kainic acid‑induced status epilepticus (SE) in juvenile rats. Neuropathol Appl Neurobiol 38: 602–616.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.