PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 64 | 4 |

Tytuł artykułu

Feces from wild Triatoma dimidiata induces local inflammation and specific immune response in a murine model

Treść / Zawartość

Warianty tytułu

Języki publikacji

Abstrakty

EN
In endemic regions for Triatoma dimidiata the vector for Chagas disease, subjects can be in contact with insect`s feces several times through a lifetime. The triatomine’s digestive tract is colonized by diverse but few dominant genera of microorganisms. The immune responses to microbiota feces are poorly known in mammal hosts. The goal of this paper is to describe the local inflammation at the port of inoculation and the humoral immune response in a murine model mimicking natural contamination of feces from wild Triatoma dimidiata and its identification of bacterial community. Feces from twenty T. dimidiata insects captured in peridomestic and domestic ecotopes were used for bacteria isolation and phenotypic identification. Five microliters of whole feces or bacteria isolated colonies were used for intradermal inoculation of mice for detection of humoral immune response and local inflammation at the inoculation site. The bacterial community identified corresponded to Kytococcus, Brevibacillus, Kocuria, Chryseobacterium, Pantoe, Proteus, Burkholderia, Acinetobacter and Stapylococcus. The local inflammation at the inoculation site was dominated by neutrophils infiltration, and specific seric IgG immune response was recognized against whole feces as well as Burkholderia, Acinetobacter and Staphylococcus isolates. In conclusion, feces from T. dimidiata were colonized by few culturable microorganism genera that are able to induce local inflammation and IgG immune response in a murine model.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

4

Opis fizyczny

p.367-377,fig.,ref.

Twórcy

autor
  • Centro de Investigaciones Biomedicas, Universidad Autonoma de Campeche, Patrico Trueba s/n, Campeche 24090, Mexico
autor
  • Centro de Investigaciones Biomedicas, Universidad Autonoma de Campeche, Patrico Trueba s/n, Campeche 24090, Mexico
  • Centro de Investigaciones Biomedicas, Universidad Autonoma de Campeche, Patrico Trueba s/n, Campeche 24090, Mexico
autor
  • Centro de Investigaciones Biomedicas, Universidad Autonoma de Campeche, Patrico Trueba s/n, Campeche 24090, Mexico

Bibliografia

  • [1] Dias E. 1934. Estudos sobre o Schizotrypanum cruzi. Memórias do Instituo Oswaldo Cruz 28: 1-110 (in Portuguese). doi:10.1590/s0074-02761934000100001
  • [2] Duncan J.T. 1926. On a bactericidal principle present in the alimentary canal of insects and arachnids. Parasitology 18: 238-252. doi:10.1017/s0031182000005205
  • [3] Montoya-Porras L.M., Omar T.C., Alzate J.F., Moreno-Herrera C.X., Cadavid-Restrepo G.E. 2018. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Tropica 178: 327-332. doi:10.1016/j.actatropica.2017.11.004
  • [4] da Mota F.F., Marinho L.P., de Carvalho Moreira C.J., Lima M.M., Mello C.B., Garcia E.S., Carels N., Azambuja P. 2012. Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease. PLoS Neglected Tropical Diseases 6: e1631. doi:10.1371/journal.pntd.0001631
  • [5] Vallejo G.A., Guhl F., Schaub G.A. 2009. Triatominae-Trypanosoma cruzi/T. rangeli: vectorparasite interactions. Acta Tropica 110: 137-147. doi:10.1016/j.actatropica.2008.10.001
  • [6] Vieira C., Waniek P.J., Mattos D.P., Castro D.P., Mello C.B., Ratcliffe N.A., Garcia E.S., Azambuja P. 2014. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasites and Vectors 7: 232-245. doi:10.1186/1756-3305-7-232
  • [7] Garcia E.S., Castro D.P., Figueiredo, M.B., Azambuja P. 2010. Immune homeostasis to microorganisms in the guts of triatomines (Reduviidae) - a review. Memórias do Instituto Oswaldo Cruz 105: 605-610. doi:10.1590/s0074-02762010000500001
  • [8] Días S., Villavicencio B., Correia N., Costa J., Haag K.L. 2016. Triatomine bugs, their microbiota and Trypanosoma cruzi: asymmetric responses of bacteria to an infected blood meal. Parasites and Vectors 9: 636. doi.org/10.1186/s13071-016-1926-2
  • [9] Castro D.P., Moraes C.S., Gonzalez M.S., Ribeiro I.M., Tomassini T.C.B., Azambuja P., Garcia E.S. 2012. Physalin B inhibits Trypanosoma cruzi infection in the gut of Rhodnius prolixus by affecting the immune system and microbiota. Journal of Insect Physiology 58: 1620-1625. doi:10.1016/j.jinsphys.2012.10.001
  • [10] Dumonteil E., Ramirez-Sierra M.J., Pérez-Carrillo S., Teh-Poot C., Herrera C., Gourbière S. Waleckx E. 2018. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Scientific Reports 8:4140 doi:10.1038/s41598-018-22455-x
  • [11] Monteon V., Quen-Rámirez E., Macedo-Reyes V., Lopez R., Acosta-Viana K., Pennigton P., Ramos-Ligonio A. 2016. Pre-exposure to faeces or saliva of Triatoma dimidiata decreases parasitemia in mice challenged with Trypanosoma cruzi: a description of the inflammatory reaction at the inoculation site. Annals of Parasitology 62: 209-219. doi:10.17420/ap6203.54
  • [12] Lent H., Wygodzisnky P. 1979. Revision of the Triatominae (Hempitera, Reduviidae) and their significance as vectors Chagas’ disease. Bulletin of the American Museum of Natural History 163:123-520.
  • [13] Engel P., Moran N.A. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews 37: 699-735. doi:10.1111/1574-6976.12025
  • [14] Gumiel M., da Mota F.F., de Sousa Rizzo V., Sarquis O., Pereira de Castro D., Lima M.M., de Souza Garcia E., Carels N., Azambuja P. 2015. Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasites and Vectors 8: 245. doi:10.1186/s13071-015-0836-z
  • [15] Machado-Ferreira E., Vizzoni V.F., Piesman J., Gazeta G.S., Soares C.A.G. 2015. Bacteria associated with Amblyomma cajennense tick eggs. Genetics and Molecular Biology 38: 477-483. doi:10.1590/s1415-475738420150040
  • [16] Benagli C., Rossi V., Dolina M., Tonolla M., Petrini O. 2011. Matrix-assisted laser desorption ionizationtime of flight mass spectrometry for the identification of clinically relevant bacteria. PLoS ONE 6: e16424. doi:10.1371/journal.pone.0016424
  • [17] Christ A.P.G., Ramos S.R., Cayô R., Gales A.C., Hachich E.M., Sato M.I.Z. 2017. Characterization of Enterococcus species isolated from marine recreational waters by MALDI-TOF MS and Rapid ID API® 20 Strep system. Marine Pollution Bulletin 118: 376-381. doi:10.1016/j.marpolbul.2017.03.025
  • [18] Jiun-Nong L., Chung-Hsu L., Chih-Hui Y., Yi-Han H., Hsiu-Fang L., Hsi-Hsun L. 2017. Comparison of four automated microbiology systems with 16S rRNA gene sequencing for identification of Chryseobacterium and Elizabethkingia species. Scientific Reports 7: 13824. doi:10.1038/s41598-017-14244-9

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3233bb1f-2a86-4963-958b-03bfe39ea2ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.