PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 76 | 3 |

Tytuł artykułu

The challenge of extra-intra craniometry: a computer-assisted three-dimensional approach on the equine skull

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: The topographical correlations between certain extracranial and intracranial osseous points of interest (POIs), and their age-related changes, are indispensable to know for a diagnostical or surgical access to intracranial structures; however, they are difficult to assess with conventional devices. Materials and methods: In this pilot study, the 3-dimensional coordinates of extra-/intracranial POIs were determined, thus avoiding perspective distortions that used to be intrinsic problems in 2-dimensional morphometry. The data sets were then analysed by creating virtual triangles. The sizes, shapes, and positions of these triangles described the extent and the directions of the age-related shifts of the POIs. A selection of extracranial and intracranial POIs were marked on half skulls of four warmblood horses in two age groups (young: 6 weeks, n = 2; old: 14 and 17 years, n = 2). The x-, y-, and z-coordinates of these POIs were determined with a measurement arm (FaroArm Fusion, FARO Europe®). Direct distances between the POIs as well as their indirect distances on the x-, y-, and z-axis, and angles were calculated. Results: The analysed virtual triangles revealed that some parts of the skull grew in size, but did not change in shape/relative proportions (proportional type of growth, as displayed by POI A and POI B at the Arcus zygomaticus). The same POIs (A and B) remained in a very stable relationship to their closest intracranial POI at the Basis cranii on the longitudinal axis, however, shifted markedly in the dorso-lateral direction. In contrast, a disproportional growth of other parts of the cranium was, for example, related to POI C at the Crista nuchae, which shifted strongly in the caudal direction with age. A topographically stable reference point (so-called anchor point) at the Basis cranii was difficult to determine. Conclusions: Two candidates (one at the Synchondrosis intersphenoidalis, another one at the Synchondrosis sphenooccipitalis) were relatively stable in their positions. However, the epicentre of (neuro-)cranial growth could only be pinpointed to an area between them. (Folia Morphol 2017; 76, 3: 458–472)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

76

Numer

3

Opis fizyczny

p.458-472,fig.,ref.

Twórcy

autor
  • Institute of Anatomy, University of Veterinary Medicine Hannover, Hanover, Germany
autor
  • Institute of Anatomy, University of Veterinary Medicine Hannover, Hanover, Germany
autor
  • Institute of Anatomy, University of Veterinary Medicine Hannover, Hanover, Germany
autor
  • Faculty II — Mechanical Engineering and Bio Process Engineering, University of Applied Sciences and Arts, Hanover, Germany
autor
  • Faculty II — Mechanical Engineering and Bio Process Engineering, University of Applied Sciences and Arts, Hanover, Germany
autor
  • Institute of Anatomy, University of Veterinary Medicine Hannover, Hanover, Germany

Bibliografia

  • 1. Brucker P. Morphometrische Untersuchung des Hirnschädels vom Pferd mit einem computergestützten 3-dimensionalen Messsystem (doctoral dissertation). University of Veterinary Medicine, Hannover 2015.
  • 2. Chrószcz A, Janeczek M, Pasicka E, et al. Height at the withers estimation in the horses based on the internal dimension of cranial cavity. Folia Morphol. 2014; 73(2): 143–148, doi: 10.5603/FM.2014.0021, indexed in Pubmed: 24902091.
  • 3. Drake AG, Klingenberg CP. The pace of morphological change: historical transformation of skull shape in St Bernard dogs. Proc Biol Sci. 2008; 275(1630): 71–76, doi: 10.1098/rspb.2007.1169, indexed in Pubmed: 17956847.
  • 4. Drake AG. Dispelling dog dogma: an investigation of heterochrony in dogs using 3D geometric morphometric analysis of skull shape. Evol Dev. 2011; 13(2): 204–213, doi: 10.1111/j.1525-142X.2011.00470.x, indexed in Pubmed: 21410876.
  • 5. Driesch A. von den. A guide to the measurement of animal bones from archaeological sites. Bulletins 1, Peabody Museum Bulletins, Harvard University. 1976: Harvard.
  • 6. Duerst JU. Vergleichende Untersuchungsmethoden am Skelett bei Säugern. In: Abderhalden E (ed.). Handbuch der biologischen Arbeitsmethoden Abt VII, Methoden der vergleichenden morphologischen Forschung. Heft 2. Urban u. Schwarzberg, Berlin, Wien. 1926.
  • 7. Evans KE, McGreevy PD. Conformation of the equine skull: a morphometric study. Anat Histol Embryol. 2006; 35(4): 221–227, doi: 10.1111/j.1439-0264.2005.00663.x, indexed in Pubmed: 16836585.
  • 8. Ge D, Yao L, Xia L, et al. Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha). Contrib Zool. 2015; 84: 267–284.
  • 9. Klatt B. über den Einflu\ der Gesamtgrö\e auf das SchÄdelbild nebst Bemerkungen über die Vorgeschichte der Haustiere. Archiv für Entwicklungsmechanik der Organismen. 1913; 36(3): 387–471, doi: 10.1007/bf02266725.
  • 10. Klingler M. Retrospektive Betrachtung des Fugenschlusses der Synchondrosen der Schädelbasis bei Hunden verschiedener Rassen unter besonderer Berücksichtigung des Cavalier King Charles Spaniels (doctoral dissertation). University of Giessen 2013.
  • 11. Komosa M, Moliński K, Godynicki S. The variability of cranial morphology in modern horses. Zoolog Sci. 2006; 23(3): 289–298, doi: 10.2108/zsj.23.289, indexed in Pubmed: 16603822.
  • 12. Krahmer R. Messungen am Kopfskelett des Pferdes. Ein Beitrag zur Bedeutung der Kraniologie, Leipzig 1963.
  • 13. Lang A, Gasse H. Preliminary histological study on synchondroses in the skull of a warmblood foal. Unpublished data. 2016.
  • 14. Löffler K. Untersuchungen über die Wachstumsverhältnisse der Kopfknochen des Pferdes (doctoral dissertation). University of Giessen 1919.
  • 15. Ludwig M. Computergestützte Craniometrie beim Pferd unter Berücksichtigung altersabhängiger Lageverschiebungen osteologischer Landmarks (doctoral dissertation). University of Veterinary Medicine, Hannover 2015.
  • 16. Onar V, Güneş H. On the variability of skull shape in German shepherd (Alsatian) puppies. Anat Rec A Discov Mol Cell Evol Biol. 2003; 272(1): 460–466, doi: 10.1002/ar.a.10052, indexed in Pubmed: 12704704.
  • 17. Osborn HF. Craniometry of the equidae. In: Memoirs of the American Museum of natural history. New Series, Vol.1, Part III. 1912: 55–100.
  • 18. Radinsky L. Allometry and reorganization in horse skull proportions. Science. 1983; 221(4616): 1189–1191, doi: 10.1126/science.221.4616.1189, indexed in Pubmed: 17811522.
  • 19. Reeve E, Murray P. Evolution in the horse’s skull. Nature. 1942; 150(3805): 402–403, doi: 10.1038/150402a0.
  • 20. Stuckenschneider K. Magnetresonanztopograhische Untersuchungen der Gehirnregion gesunder und neurologisch erkrankter Pferde mit einer Feldstärke von 3 Tesla (doctoral dissertation). University of Veterinary Medicine, Hannover 2013.
  • 21. Stuckenschneider K, Hellige M, Feige K, et al. 3-Tesla magnetic resonance imaging of the equine brain in healthy horses – Potentials and limitations. Pferdeheilkunde Equine Medicine. 2014; 30(6): 657–670, doi: 10.21836/pem20140605.
  • 22. Ussow SS. Über Alters- und Wachstumsveränderungen am Knochengerüst der Haussäuger. Arch Wiss Prakt Tierhk. 1901; 27: 339–394.
  • 23. Ussow SS. Über Alters- und Wachstumsveränderungen am Knochengerüst der Haussäuger. Arch Wiss Prakt Tierhk. 1902; 28: 113–137.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-31f6f87e-bbc3-4a95-86f7-9bf3aba99f43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.