PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 17 | 2 |

Tytuł artykułu

Biochemical, mineral and anatomical characteristics of the olive tree cv. Chetoui growing in several Tunisian areas

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To tolerate harsh climatic conditions, olive tree Chetoui has developed some anatomic, physiologic and biochemical mechanisms. The aim of this study was to determine the indicators of stress in leaves, stems and roots growing under various climatic conditions. To protect against stress conditions this cultivar increased cuticle thickness, protective structures and building parenchyma tissues of leaves, woods and roots from the North to the South. The volatile compounds, extracted from northern and southern Chetoui leaves and roots, were analyzed by GC-FID and GC-MS. Great changes in volatiles were illustrated in the studied organs, by enrichment in phenolics and fatty acids for leaves and in hydrocarbons for roots of southern Chetoui. Also, a reduction in terpenes, alcohols and carbonylic compounds was noted in both southern samples. Moreover, minerals of all organs of Chetoui, varied in content and allocation, but their levels are the highest in leaves. The changes in volatiles might be affected by changes in the mineral elements uptake or accumulation under environment stress. A significant correlation was noted between phenolic compounds and sodium, nitrogen, and calcium contents. However, terpenoids was highly correlated with phosphorus content for all organs and studied areas. The detection of new volatiles, anatomical and mineral changes seem to be efficient indicators of adaptation of Chetoui to environment stress conditions.

Wydawca

-

Rocznik

Tom

17

Numer

2

Opis fizyczny

p.49-70,fig.,ref.

Twórcy

  • Olive Tree Institute, Ibn Khaldoun BP14, 4061, Sousse, Tunisia
autor
  • Olive Tree Institute, Ibn Khaldoun BP14, 4061, Sousse, Tunisia
autor
  • Laboratory of Natural Substances Chemistry and Organic Synthesis, Faculty of Sciences, 5000 Monastir, Tunisia
autor
  • Olive Tree Institute, Ibn Khaldoun BP14, 4061, Sousse, Tunisia
autor
  • Olive Tree Institute, Ibn Khaldoun BP14, 4061, Sousse, Tunisia

Bibliografia

  • Abaza, L., Taamalli, A., Arráez-Román, D., SeguraCarretero, A., Fernández-Gutierrérez, A., Zarrouk, M., Ben Youssef, N. (2017). Changes in phenolic composition in olive tree parts according to development stage. Food Res. Int., 3, 454–461.
  • Adams, R.P. (1995). Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publishing Corp, Carol Stream, IL.
  • Agarwal, M., Zhu, J.K. (2005). Integration of abiotic stress signaling pathways. In: Plant abiotic stress, Jenks, M.A., Hasegawa, P.M. (eds). Blackwell Publishing, Oxford, 215–247.
  • Al-Absi, K.M., Al-Nasir, F.M. (2009). Mahadeen. Mineral content of three olive cultivars irrigated with treated industrial wastewater. Agric. Water Manag., 96, 616–626.
  • Bacelar, E.A., Santos, D.L., Moutinho-Pereira, J.M., Gonçalves, B.C., Ferreira, H.F.,
  • Correia, C.M. (2006). Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage. Plant Sci., 170, 596– 605.
  • Belhadj, S., Derridj, A., Aigouy, T., Gers, C., Gauquelin, T., Mevy, J.P. (2007). Comparative morphology of leaf epidermis in eight populations of atlas Pistachio (Pistacia atlantica Desf., Anacardiaceae). Microsc. Res. Tech., 70, 834–846.
  • Ben Khelil, M. (2010). Evaluation du statut nutritionnel de l’Olivier (Olea europaea) par la méthode du diagnostique floral. National Institute of Agronomy of Tunisia, Tunis. Bosabalidis, A., Kofidis, G. (2002). Comparative effects of drought on leaf anatomy of two olive cultivars. Plant Sci., 163, 375–379.
  • Boughalleb, F., Abdellaoui, R., Ben-Brahim, N., Neffati, M. (2014). Anatomical adaptations of Astragalus gombiformis Pomel. Under drought stress. Cent. Eur. J. Biol., 9(12), 1215–1225.
  • Boulal, H., Sikaoui, L.H., El Gharous, M. (2013). Nutrient management: a new option for olive orchards in North Africa. Better Crop. Plant Food, 97(4), 20–21.
  • Boussadia, O., Bchir, A., Steppe, K., Van Labeke, M.C., Lemeur, R., Braham, M. (2013). Active and passive osmotic adjustment in olive tree leaves during drought stress. Eur. Sci. J., 9(24), 1423–1439.
  • Braham, M., Mhiri A. (1997). Etudes des causes du jaunissement des feuilles d’olivier par la methode du diagnostic foliaire. Journée de l’IRESA, Tunisie. Braham, M. (1999). Evaluation des exportations en azote, en phosphate et en Potassium d’un hectare d’olivier ‘Chemlali’ (Olea europaea L.). Revue Ezzaitouna, 5, 1–2.
  • Braham, M. (1984). Evolution des réserves minérales et carbonées chez les variétés d’Olivier à huile «Chétoui» et «Chemlali» (Olea europaea. L). Memoire de 3éme Cycle de spécialisation Oléiculture- Oléotechnie, INAT.
  • Brahmi, F., Dabbou, S., Flamini, G., Edziri, H., Mastouri, M., Hammami, M. (2011). Fatty acid composition and biological activities of volatiles from fruits of two Tunisian olive cultivars. Int. J. Food Sci. Technol., 46, 1316–1322.
  • Brahmi, F., Mechri, B., Dabbou, S., Dhibi, M., Hammami, M. (2012). The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Ind. Crop. Prod., 38, 146–152.
  • Buchman, N. (1958). Suggestions pour une nouvelle technique de plantations d’oliviers en zone semi-aride. Première Conférence Internationale des Techniciens Oléicoles. Tanger. Bustana. A., Avnia, A., Yermiyahua, U., Ben-Gala, A., Riovb, J., Erela, R., Ziporia, I., Dag, A. (2013). Interactions between fruit load and macroelement concentrations in fertigated olive (Olea europaea L.) trees under arid saline conditions. Sci. Hortic., 152, 44–55.
  • Cameron, K.D., Teece, M.A., Bevilacqua, E., Smart, L.B. (2002). Diversity of cuticular wax among Salix species and Populus species hybrids. Phytochemistry, 60, 715–725.
  • Cetinkayaa, H., Koca, M., Kulak, M. (2016). Monitoring of mineral and polyphenol content in olive leaves under drought conditions: Application chemometric techniques. Ind. Crop. Prod., 88, 78–84.
  • Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P., Osório, M.L., Carvalho, I., Faria, T., Pinheiro, C. (2002). How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot., 8(7), 907–916.
  • Connell, J.H., Vossen, PM. (2007). Organic olive orchards nutrition. In: Organic olive production manuel, Vossen, P.M. (ed.). Publ. 3505, University of California, Oakland, 37–43. COI (2009). International Olive Council. Olive bioteq, 169–176, www.internationaloliveoil.org. DGPA 2015.
  • Direction Générale de Production Agricole, Ministère de l’Agriculture et de l’Environnement. Tunis, Tunisie. Ehrenberger, W., Rüger, S., Rodríguez-Domínguez, C.M., Díaz-Espejo, A., Fernández, J.E., Moreno, J., Zimmermann, D., Sukhorukov, V.L., Zimmermann, U. (2012). Leafpatch clamp pressure probe measurements on olive leaves in a nearly turgorlessstate. Plant Biol., 14(4), 666–674.
  • Ennajeh, M., Vadel, A.M., Khemira, H. (2010). Comparative impacts of water stress on leaf anatomy of droughtresistant and drought-sensitive olive cultivars. J. Hortic. Sci. Biotechnol., 85(4), 289–294.
  • Enstone, D.E., Peterson,C.A., Ma, F. (2003). Root endodermis and exodermis: structure, function, and responses to the environment. J. Plant Growth Regul., 21, 335–351.
  • Erel, R., Yermiyahu, U., Opstal, J.V., Ben-Gal, A., Schwartz, A., Dag, A. (2013). The importance of olive (Olea europaea L.) tree nutritional status on its productivity. Sci. Hortic., 159, 8–18.
  • Ezzili, B. 1996. Effect of gibberellins on fertility and mineral content in leaves of black Grenache grapes (Vitisvinifera L.). M.H.A., 8(23), 34–39.
  • Fernández, J.E. (2014). Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environ. Exp. Bot., 103,158–179.
  • Fernández-Escobar, R., Ortiz-Urquiza, A., Prado, M., Rapoport, H.F. (2008). Nitrogen status influence on olive tree flower quality and ovule longevity. Environ. Exp. Bot., 64, 113–119.
  • Fernández-Escobar, R. (2010). Fertilization. In:. Olive growing, Barranco, D., Fernández-Escobar, R., Rallo, L (eds) RIRDC, Australia. Freeman, M., Uriu, K., Hartmann, H.T. (2005). Diagnosing and correcting nutrient problems. In: Olive production manual, Sibbet, G.S., Ferguson, L. (eds). University of California, Agriculture and Natural Resources, Oakland. Gonzalez, Z.F., Garcia, A.M., Chaves, M., Mazuelos, C. (1968).
  • Equilibrio nutritivo en variedadas deolivar de mesa de la provincia de Sevilla. 2éme Coll. Contrôle de la fertilisation des plantes cultivées, Seville, 29–36.
  • Guerfel, M., Baccouri, O., Boujnah, D., Chaıbi, W., Zarrouk, M. (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci. Hortic., 119, 257–263.
  • Jacobsen, L.A., Agenbag, L., Esler, J.K., Pratt, R.B., Ewers, W.F., Davis, D.S. (2007). Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. J. Ecol., 95, 171–183.
  • Kafkafi, U. (1990). The functions of plant K in overcoming environmental stress situations. In: Development of Kfertilizer recommendations. Proceedings 22nd Colloquium of the International Potash Institute. Kchaou, H., Larbi, A., Gargour, I.K., Chaieb, M., Morales, F., Msallem, M. (2010). Assessment of tolerance to NaCl salinity of five olive cultivars, based on growth characteristics and Na+ and Cl− exclusion mechanisms. Sci. Hortic., 124, 306–315.
  • Kopittke, P.M. (2012). Interactions between Ca, Mg, Na and K: alleviation of toxicity in saline solutions. Plant Soil, 352, 353–362.
  • Kun-Ming, C., Feng, W., Yu-Hua, W., Tong, C., Yu-Xi, H., Jin-Xing, L. (2006). Anatomical and chemical characteristics of foliar vascular bundles in four reed ecotypes adapted to different habitats. Flora, 201, 555–569.
  • Lillo, C., Lea, U.S., Ruoff, P. (2008). Nutrient depletion as a key factor formanipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ., 31, 587–601.
  • Llusià, J., Peñuelas, J. (1998). Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can. J. Bot., 76, 1366–1373.
  • Locquin, M., Langeron, M. (1996). Manuel de Microscopie. 2ème édition. Masson, Paris. Martin, P., Garrad, J., Goutier, P. (1984). Méthodes analytiques de référence: l’analyse végétale dans le contrôle de l’alimentation des plantes tempérées et tropicales. Lavosier (editions tec et Doc). France. Martins, M.B.G., Zieri, R. (2003). Leaf anatomy of rubbertree clones. Sci. Agric., 60, 709–713.
  • Martinez, J.P., Ledent, J.F., Baiji, M., Kinet, J., Lutts, S. (2003). Effect of water stress on growth, Na+ and K+ accumulation and water use efficacy in relation into osmotic adjustment in two populations of Atriplex halimus L. Plant Growth Reg., 4(1), 63–73.
  • Mediavilla, S., Escudero, A., Heilmeier, H. (2001). Internal leaf anatomy and photosynthetic resourse-use efficiency: interspecific and intraspecific comparisons. Tree Physiol., 21, 251–259.
  • Meinzer, F.C. (2002). Co-ordination of vapour and liquid phase water transport properties in plants. Plant Cell Environ., 25, 265–274.
  • Nurzyńska-Wierdak, R. (2013). Essential oil composition of the coriander (Coriandrum sativum L.) herb depending on the development stage. Acta Agrobot., 66(1), 53–60.
  • Paranychianakis, N.V., Angilakis, S.N. (2008). The effect of water stress and root stock on the development of leaf injuries in grape vines irrigated with saline effluent. Agric. Water Manag., 95(4), 375–382.
  • Penuelas, J., Estiarte, M. (1998). Can elevated CO2 affect secondary metabolism and ecosystem function. Trends Ecol. Evol., 1, 20–24.
  • Petridis, A., Therios, I., Samouris, G., Koundouras, S., Giannakoula, A. (2012). Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol. Biochem., 60, 1–11.
  • Pratt, R.B., Jacobsen, A.L., Ewers, F.W., Davis, S.D. (2007). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol., 174, 787–798.
  • Ristic, Z., Cass, D.D. (1991). Leaf anatomy of Zea mays L. in response to water shortage and high temperature: a comparison of drought-resistant and drought sensitive lines. Bot. Gaz., 152, 173–185.
  • Rossi, L., Sebastiani, L., Tognetti, R., d’Andria, R., Morelli, G., Cherubini, P. (2013). Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability. Plant Soil, 372, 567–579.
  • Ryan, K.G., Swinny, E.E., Markham, K.R., Winefield, C. (2002). Flavonoid gene expression and UV photopro tection in transgenic and mutant Petunia leaves. Phytochemistry, 59, 23–32
  • Saidana Naija, D., Boussaadia,O., Ben Dhiab, A., Ben Mariem, F., Braham, M. (2014). Valorization of the olive sector effluents as potential fertilizers and their impact on biological, physical and chemical properties of the soil. Res. J. Agric. Environ. Manag., (9), 450–459.
  • Saidana Naija, D., Medimagh, S., Ben Dhiab, A., Ben Mansour, S., Ayachi, M, Braham, M. (2015). Volatile composition, anatomical and mineral changes of the olive tree cultivar Chemlali under different climatic conditions. Int. J. Agric. Innov. Res., 2(3), 1382–1392.
  • Shibamoto, T. (1987). Retention indices in essential oil analysis. In: Capillary gas chromatography in essential oil. Chapter 8. Sandra, P., Bicchi, C. (eds). Huetig Verlag, Heidelberg, 259–274.
  • Therios, I.N., Sakellariadis, S.D. (1982). Some effects of varied magnesium nutrition on the growth and composition of olive plants (cultivar ‘Chondrolia Chalkirdikis’). Sci. Hortic., 17, 33–41.
  • Vieira Areal Bacelar, E.L. (2006). Ecophysiological responses of olive (Olea europaea L.) to restricted water availability: limitations, damages and drought resistance mechanisms. University of Universidade de Trásos-Montes e Alto Douro, Vila Real.
  • Zhang, Y., Giboulot, A., Zivy, M., Valot, B., Jamet, E., Albenne, C. (2011). Combining various strategies to increase the coverage of the plant cell wall glycoproteome. Phytochemistry, 72, 1109–1123.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-317a32cb-0731-4ee7-a17a-2c024e0a55cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.