PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 1 |
Tytuł artykułu

Immune stress up regulates TLR4 and Tollip gene expression in the hypothalamus of ewes

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bacterial endotoxin, LPS, is recognized by Toll-like receptor-4 (TLR4) and induces a signaling cascade leading to synthesis of proinflammatory cytokines and induction of sickness behavior in animals. Transduction of the TLR4 signal is controlled by a potent negative regulator—Toll-interacting protein. The presented study concerns the effect of intravenously injected LPS on the level of expression of TLR4 and Tollip genes in the hypothalamus of ewes. Endotoxin increased (P < 0.01) cortisol release and expression of TLR4 and Tollip genes in the preoptic area (1.87 ± 0.42 and 1.31 ± 0.15), anterior hypothalamus (1.77 ± 0.22 and 1.27 ± 0.13), medial basal hypothalamus (2.53 0.65 and 1.43 ± 0.15), and median eminence (2.93 ± 0.46 and 1.73 ± 0.10), respectively, in comparison with non-treated animals. Our results show that immune stress increases TLR4 gene expression in the hypothalamus. Increased transcription of Tollip may be an attempt to reduce the effect of TLR4 stimulation.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
22
Numer
1
Opis fizyczny
p.13-18,fig.,ref.
Twórcy
autor
  • The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland
autor
  • The Academy of Cosmetics and Health Care in Warsaw, 00-252 Warsaw, Poland
autor
  • The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland
  • The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland
Bibliografia
  • Banks W.A., Robinson S.M., 2010. Minimal penetration of lipopolysaccharide across the murine blood-brain barrier. Brain Behav. Immun. 24, 102–109
  • Besedovsky H.O., del Rey A., 1996. Immune-neuro-endocrine interactions: facts and hypotheses. Endocrine Rev. 17, 64–102
  • Bluthé R.M., Castanon N., Pousset F., Bristow A., Ball C., Lestage J., Michaud B., Kelley K.W., Dantzer R., 1999. Central injection of IL-10 antagonizes the behavioural effects of lipopolysaccharide in rats. Psychoneuroendocrinology 24, 301–311
  • Chakravarty S., Herkenham M., 2005. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J. Neurosci. 25, 1788–1796
  • Coleman E.S., Elsasser T.H., Kemppainen R.J., Coleman D.A., Sartin J.L., 1993. Effect of endotoxin on pituitary hormone secretion in sheep. Neuroendocrinology 58, 111–122
  • Dadoun F., Guillaume V., Sauze N., Farisse J., Velut J.G., Orsoni J.C., Gaillard R., Oliver C., 1998. Effect of endotoxin on the hypothalamic-pituitary-adrenal axis in sheep. Eur. J. Endocrinology 138, 193–197
  • Dantzer R., 2004. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur. J. Pharmacol. 500, 399–411
  • Ebisui O., Fukata J., Tominaga T., Murakami N., Kobayashi H., Segawa H., Muro S., Naito Y., Nakai Y., Masui Y., 1992. Roles of interleukin-1α and -1β in endotoxin-induced suppression of plasma gonadotropin levels in rats. Endocrinology 130, 3307–3313
  • Esposito P., Gheorghe D., Kandere K., Pang X., Connolly R., Jacobson S., Theoharides T.C., 2001. Acute stress increases permeability of the blood–brain-barrier through activation of brain mast cells. Brain Res. 888, 117–127
  • Feng S.Y.S., Yu V.Y.H., Walker A.M., 2007. Endotoxin-induced circulatory changes in the newborn brain: A review. Hong Kong J. Pediat. (New Series) 12, 111–117
  • Kaisho T., Akira S., 2006. Toll-like receptor function and signalling. J. Allerg. Clin. Immunol. 117, 979–987
  • Kokot F., Stupnicki R. (Editors), 1985. Radioimmunological and Radiocompetitive Methods Used in Clinical Studies. (in Polish). 2nd Edition. Warsaw, PZWL
  • Laflamme N., Rivest S., 2001. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. Feder. Amer. Soc. Exp. Biol. J. 15, 155–163
  • Leon C.G., Tory R., Jia J., Sivak O., Wasan K.M., 2008. Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharmaceut. Res. 25,1751–1761
  • Li T., Hu J., Li L., 2004. Characterization of Tollip protein upon Lipopolysaccharide challenge. Mol. Immunol. 41, 85–92
  • Melmed S., 2001. The immuno-neuroendocrine interface. J. Clin. Invest. 108, 1563–1566
  • Muzio M., Bosisio D., Polentarutti N., D’amico G., Stoppacciaro A., Mancinelli R., Van’t Veer C., Penton-Rol G., Ruco L.P., Allavena P., Mantovani A., 2000. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 164, 5998–6004
  • Nguyen M.D., Julien J.P., Rivest S., 2002. Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat. Rev. Neurosci. 3, 216–227
  • Nomura F., Akashi S., Sakao Y., Sato S., Kawai T., Matsumoto M., Nakanishi K., Kimoto M., Miyake K., Takeda K., Akira S., 2000. Cutting edge: Endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface TollLike receptor 4 expression. J. Immunol. 164, 3476–3479
  • Otte J.M., Cario E., Podolsky D.K., 2004. Mechanisms of cross hyporesponsiveness to toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 126, 1054–1070
  • Pedchenko T.V., Park G.Y., Joo M., Blackwell T.S., Christman J.W., 2005. Inducible binding of PU.1 and interacting proteins to the Toll-like receptor 4 promoter during endotoxemia. Amer. J. Physiol. – Lung Cell M. Ph. 289, L429–L437
  • Pfaffl M.W., Horgan G.W., Dempfle L., 2002. Relative Expression Software Tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl. Acids Res. 30, E36
  • Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P., 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515
  • Singh A.K., Jiang Y., 2004. How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology 201, 197–207
  • Tsatsanis C., Androulidaki A., Alissafi T., Charalampopoulos I., Dermitzaki E., Roger T., Gravanis A., Margioris A.N., 2006. Corticotropin-releasing factor and the urocortins induce the expression of TLR4 in macrophages via activation of the transcription factors PU.1 and AP-1. J. Immunol. 176, 1869–1877
  • Tsuji M., Matsuda H., Miwa H., Miyazaki S., 2003. Antimicrobialinduced release of endotoxin from Pseudomonas aeruginosa: comparison of in vitro and animal models. J. Antimicrob. Chemother. 51, 353–359
  • Turgut M., Erdogan S., Ergin K., Serter M., 2007. Melatonin ameliorates blood-brain barrier permeability, glutathione, and nitric oxide levels in the choroid plexus of the infantile rats with kaolininduced hydrocephalus. Brain Res. 1175, 117–125
  • Wilson A.C., Clemente L., Liu T., Bowen R.L., Meethal S.V., Atwood C.S., 2008. Reproductive hormones regulate the selective permeability of the blood-brain barrier. BBA – Mol. Basis Dis. 1782, 401–407
  • Zhang G., Ghosh S., 2002. Negative regulation of toll-like receptormediated signaling by Tollip. J. Biol. Chem. 277, 7059–7065
  • Zhou Q., Tan X., Wang J., Zhou B., Guo P., 2011. Increased permeability of blood-brain barrier caused by inflammatory mediators is involved in high altitude cerebral edema. Sci. Res. Essays 6, 607–615
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3178dafe-44b5-406b-8424-773d0e102480
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.