PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 80 | 1 |

Tytuł artykułu

C60 fullerenes increase the intensity of rotational movements in non‑anesthetized hemiparkinsonic rats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effect of C60 fullerene aqueous colloid solution (C60FAS) on the intensity of long‑lasting (persisting for one hour) rotational movements in non‑anesthetized rats was investigated. For this purpose, an experimental hemiparkinsonic animal model was used in the study. Rotational movements in hemiparkinsonic animals were initiated by the intraperitoneal administration of the dopamine receptor agonist apomorphine. It was shown that a preliminary injection of C60FAS (a substance with powerful antioxidant properties) in hemiparkinsonic rats induced distinct changes in animal motor behavior. It was revealed that fullerene‑pretreated animals, in comparison with non‑pretreated or vehicle‑pretreated rats, rotated for 1 h at an approximately identical speed until the end of the experiment, whereas the rotation speed of control rats gradually decreased to 20–30% of the initial value. One can assume that the observed changes in the movement dynamics of the hemiparkinsonic rats after C60FAS pretreatment presumably can be induced by the influence of C60FAS on the dopaminergic system, although the isolated potentiation of the action of apomorphine C60FAS cannot be excluded. Nevertheless, earlier data on the action of C60FAS on muscle dynamics has suggested that C60FAS can activate a protective action of the antioxidant system in response to long‑lasting muscular activity and that the antioxidant system in turn may directly decrease fatigue‑related changes during long‑lasting muscular activity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

80

Numer

1

Opis fizyczny

p.32-37,fig.,ref.

Twórcy

  • Department of Movement Physiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
  • Department of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
  • Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
  • Department of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
autor
  • Department of Blood Circulation, Bogomoletz Institute of Physiology, Kyiv, Ukraine
autor
  • Department of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
  • Department of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
autor
  • Department of Hypoxic States Investigation, Bogomoletz Institute of Physiology, Kyiv, Ukraine
  • ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
autor
  • Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Ilmenau, Germany
  • Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
  • Department of Movement Physiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine

Bibliografia

  • Banerjee AK, Mandal A, Chanda D, Chakraborti S (2003) Oxidant, antioxidant and physical exercise. Mol Cell Biochem 253: 307–312.
  • Boyas S, Guével A (2011) Neuromuscular fatigue in healthy muscle: Underlying factors and adaptation mechanisms. Ann Phys Rehabil Med 54: 88–108.
  • Casey DP, Joyner MJ (2011) Local control of skeletal muscle blood flow during exercise: influence of available oxygen. J Appl Physiol 111: 1527–1538.
  • Clanton TL, Zuo L, Klawitter P (1999) Oxidants and skeletal muscle function: physiologic and pathophysiologic implications. Proc Soc Exp Biol Med 222: 253–262.
  • Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72: 637–646.
  • Ervilha UF, Farina D, Arendt‑Nielsen L, Graven‑Nielsen T (2005) Experimental muscle pain changes motor control strategies in dynamic contractions. Exp Brain Res 164: 215–224.
  • Ferreira LF, Reid MB (2008) Muscle‑derived ROS and thiol regulation in muscle fatigue. J Appl Physiol 104: 853–860.
  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81: 1725–1789.
  • Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) C60 fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5: 2578–2585.
  • Harris RC, Sale C (2012) Beta‑alanine supplementation in high‑intensity exercise. Med Sport Sci 59: 1–17.
  • Hong SS, Lee JY, Lee JS, Lee HW, Kim HG, Lee SK, Park BK, Son CG (2015) The traditional drug Gongjin‑Dan ameliorates chronic fatigue in a forcedstress mouse exercise model. J Ethnopharmacol 168: 268–278.
  • Keykhosravi S, Rietveld IB, Couto D, Tamarit JL, Barrio M, Céolin R, Moussa F (2019) [60]Fullerene for medicinal purposes, a purity criterion towards regulatory considerations. Materials 12: E2571.
  • Kirik D, Rosenblad C, Björklund A (1998) Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6‑hydroxydopamine in the rat. Exp Neurol 152: 259–277.
  • Lee KP, Shin YJ, Cho SC, Lee SM, Bahn YJ, Kim JY, Kwon ES, Jeong DY, Park SC, Rhee SG, Woo HA, Kwon KS (2014) Peroxiredoxin 3 has a crucial role in the contractile function of skeletal muscle by regulating mitochondrial homeostasis. Free Radical Biol Med 77: 298–306.
  • Mach J, Midgley AW, Dank S, Grant R, Bentley DJ (2010) The effect of antioxidant supplementation on fatigue during exercise: potential role for NAD+(H). Nutrients 2: 319–329.
  • Maisky VA, Oleshko NN, BazilyukOV, Talanov SA, Sagach VF, Appenzeller O (2002) Fos and nitric oxide synthase in rat brain with chronic mesostriatal dopamine deficiency: effects of nitroglycerin and hypoxia. Parkinsonism Relat Disord 8: 261–270.
  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic Press, San Diego. Pinheiro CHJ, Vitzel KF, Curi R (2012) Effect of N‑acetylcysteine on markers of skeletal muscle injury after fatiguing contractile activity. Scand J Med Sci Sports 22: 24–33.
  • Powers SK, Jackson MJ (2008) Exercise‑induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88: 1243–1276.
  • Prylutskyy YI, Vereshchaka IV, Maznychenko AV, Bulgakova NV, Gonchar OO, Kyzyma OA, Ritter U, Scharff P, Tomiak T, Nozdrenko DM, Mishchenko IV, Kostyukov AI (2017) C60 fullerene as promising therapeutic agent for correcting and preventing skeletal muscle fatigue. J Nano‑ biotechnology 15: 8.
  • Reid MB, Stokić DS, Koch SM, Khawli FA, Leis AA (1994) N‑acetylcysteine inhibits muscle fatigue in humans. J Clin Invest 94: 2468–2474.
  • Ritter U, Prylutskyy YuI, Evstigneev  M, Davidenko NA, Cherepanov VV, Senenko AI, Marchenko OA, Naumovets AG (2015) Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fuller Nanotubes Carbon Nanostruct 23: 530–534.
  • Talanov SA, Maisky VA, Fedorenko OA (2018) Natural complexes are more effective in neuroprotection than single antioxidants. Neuromedicine 1: 1–8.
  • Vereshchaka IV, Bulgakova NV, Maznychenko AV, Gonchar OO, Prylutskyy  YI, Ritter U, Moska  W, Tomiak T, Nozdrenko DM, Mish‑ chenko IV, Kostyukov AI (2018) C60 Fullerenes diminish muscle fatigue in rats comparable to N‑acetylcysteine or β‑alanine. Front Physiol 9: 517.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-30c10939-9309-412d-8e0d-0c0e58577d89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.