PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |

Tytuł artykułu

Role of Acinetobacter sp. CS9 in improving growth and phytoremediation potential of Catharanthus longifolius under cadmium stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Some rhizobacteria are capable of improving metal tolerance and growth of plants under heavy metal stress. The objective of the current study was isolation and subsequent application of cadmium-resistant rhizobacteria in phytoremediation by Catharanthus longifolius. The screened bacterial isolate exhibited growth-promoting attributes, including phosphate solubilization, ACCD activity, auxin, and siderophores production. The inoculation of Acinetobacter sp. CS9 under greenhouse trial improved growth and phytoextraction capability of C. longifolius plants in soils contaminated with different concentrations (0, 100, and 200 mg kg⁻¹) of Cd. The plants exhibited reduced quantity of total soluble protein, soluble sugars, and chlorophyll contents under Cd stress. On the other hand, improved chlorophyll, soluble protein, and sugar contents were observed in Acinetobacter sp. CS9-treated plants. The inoculated plants exhibited improved activity of antioxidant enzymes (SOD and CAT) and reduced malondialdehyde levels. Moreover, higher Cd uptake and translocation ratio was observed in Acinetobacter sp. CS9-inoculated plants as compared to un-inoculated ones. The current study showed that Acinetobacter sp. CS9 reduced Cd-induced oxidative stress and improved the phytoremediation capability of C. longifolius.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.435-443,fig.,ref.

Twórcy

autor
  • University of the Punjab, Lahore, Pakistan
autor
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
autor
  • College of Earth and Environmental Sciences,, University of the Punjab, Lahore, Pakistan
autor
  • University of the Punjab, Lahore, Pakistan
autor
  • University of the Punjab, Lahore, Pakistan
autor
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan

Bibliografia

  • 1. HAMID A., RIAZ H., AKHTAR S., AHMAD S.R. Heavy Metal Contamination in Vegetables, Soil and Water and Potential Health Risk Assessment. American-Eurasian Journal of Agricultural and Environmental Sciences, 16 (4), 786, 2016.
  • 2. BIAN B., LIN C., LV L. Health risk assessment of heavy metals in soil-plant system amended with biogas slurry in Taihu basin, China. Environmental Science and Pollution Research, 23, 16955, doi: 10.1007/s11356-016-6712-3.2016.
  • 3. DATTA J.K., GHOSH D., BANERJEE A., KUMAR, MONDAL N. Studies on the Impact of cadmium on Growth, Yield Attributes, Yield and Biochemistry of Mung Bean (Vigna radiata L Wilczek) Under Natural Field Condition, Burdwan, West Bengal.. Scientia Agriculturae, 14 (1), 202, (DOI: 10.15192/PSCP.SA.2016.14.1.202209), 2016.
  • 4. GALLEGO S.M., PENA L.B., BARCIA R.A., AZPILICUETA C.E., IANNONE M.F., ROSALES E.P., ZAWOZNIK M.S., GROPPA M.D., BENAVIDES M.P. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33, 2012.
  • 5. LIU K., YU F., CHEN M., ZHOU Z., CHEN C., LI M.S., ZHU J. A newly found manganese hyperaccumulator Polygonum lapathifolium Linn. International Journal of Phytoremediation, 18(4), 348, doi: 10.1080/15226514.2015.1109589, 2016.
  • 6. HAMZAH A., HAPSARI R.I., WISNUBROTO E.I. Phytoremediation of Cadmium-contaminated agricultural land using indigenous plants. International Journal of Environmental and Agriculture Research, ISSN 2454-1850, 2(1), 2016.
  • 7. KHAN W.U., AHMAD S.R., YASIN N.A., ALI A., AHMAD A. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb contaminated soils. International Journal of Phytoremediation, 19 (6), 514, DO:10.1080/15226514.2016.1254154, 2017.
  • 8. KUMAR S.P., VARMAN P.A.M., KUMARI R. Stress response in Catharanthus roseus leaves through proteomic approach. 10th International Conference on Biology, Environment and Chemistry, 1, IACSIT press Singapore, 2011.
  • 9. SUBHASHINI V., SWAMY A.V.V.S. Phytoremediation of Pb and Ni Contaminated Soils Using Catharanthus roseus (L.). Universal Journal of Environmental Research and Technology, 3 (4), 465, 2013.
  • 10. EHSAN N., NAWAZ R., AHMAD S., KHAN M.M., HAYAT J. Phytoremediation of chromium contaminated soil by an ornamental plant Vinca (Vinca rosea L.). Journal of Environmental and Agricultural Sciences, 7, 29, 2016.
  • 11. NOCTOR G., FOYER, C.H. Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiology, 171, 1581, 2016.
  • 12. BOWLER C., MONTAGU M.V., INZE D. Superoxide dismutase and stress tolerance. Annual Reviews in Plant Physiology and Plant Molecular Biology, 43, 83, 1992.
  • 13. GILL S.S., TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909, 2010.
  • 14. ANDRADE S.A.L., GRA P.L., AZEVEDOB R.A., SILVEIRA A.P.D., SCHIAVINATO M.A. Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany, 68, 198, 2010.
  • 15. SOBARIU D.L., FERTU D.I., DIACONU M., PAVEL L.V., HLIHOR R.M., DRĂGOI E.N., CURTEANU S., LENZ M., CORVINI P.F., GAVRILESCU M. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. N Biotechnology, 1871-6784 (16), 32403. doi: 10.1016/j.nbt.2016.09.002, 2016.
  • 16. WU F.Y., HU J.L., WU S.C., WONG M.H. Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils. Environmental Science and Pollution Research, 22, 8919, 2015.
  • 17. KHAN W.U., YASIN N.A., AHMAD S.R., ALI A., AHMED S., AHMAD A. Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils. International Journal of Phytoremediation, 19 (5), 470, DOI: 10.1080/15226514.2016.1244167, 2017.
  • 18. ULLAH A., HENG S., MUNIS M.F.H., FAHAD S., YANG X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117, 28, 2015.
  • 19. AHMAD I., AKHTAR M.J., ASGHAR H.N., GHAFOOR U., SHAHID M. Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. Journal of Plant Growth Regulation, 35 (2), 303, 2016.
  • 20. KHAN W.U., AHMAD S.R., YASIN N.A., ALI A., AHMAD A., AKRAM W. Application of Bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. International Journal of Phytoremediation, 19 (9), 813, DOI: 10.1080/15226514.2017.1290580, 2017.
  • 21. GHAZIFARD K., TAVAKOL. Identification of bacteria resistant to heavy metals in the soils of Isahan provice. Iranian Journal Science and Technology, 31, 122, 2007.
  • 22. SHRIVASTAVA A., SINGH V., JADON S., BHADAURIA S, Heavy metal tolerance of three different bacteria isolated from industrial effluents. International journal of pharmaceutical research and bio-science, 2, 137, 2013.
  • 23. EUROPEAN FOOD SAFETY AUTHORITY, PARMA, ITALY (EFSA). Guidance on the assessment of bacterial susceptibility to antimicrobial of human and veterinary importance. EFSA Journal, 10 (6), 2740, 2012.
  • 24. BERGEY D.H., HOLT J.G., KRIEG N.R., SNEATH P.H.A. Bergey’ s manual of determinative bacteriology, 9th ed., (Breed RS, Murray EGD and Smith NR, eds.) WILLIAMS and WILKIMS, Baltimore, 1994.
  • 25. YASIN N.A., ZAHEER M.M., KHAN W.U., AHMAD S.R., AHMAD A., ALI A., AKRAM W. The beneficial role of potassium in Cd-induced stress alleviation and growth improvement in Gladiolus grandiflora L. International Journal of Phytoremediation, (accepted), 2017.
  • 26. SARWAR M., KREMER R.J. Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant and Soil, 172, 261, 1995.
  • 27. PIKOVSKYAYA R.I. Mobilization of phosphorus in soil in connection with vital capacity of source microbial species. Microbiologia, 17, 326, 1948.
  • 28. SCHWYN B., NEILANDS J.B. Universal chemical assay for detection and determination of siderophores. Analytical Biochemistry, 160, 47, 1987.
  • 29. HONMA M., SHIMOMURA T. Metabolism of 1-aminocyclopropane-1carboxylicacid. Agricultural Biology and Chemistry, 42, 1825, doi:10.1271/bbb1961.42.1825, 1978.
  • 30. ZHOU W., QIN S., LYU D., ZHANG P. Soil sterilisation and plant growth-promoting rhizobacteria promote root respiration and growth of sweet cherry rootstocks. Archives of Agronomy and Soil Science, 61(3), 361, 2015.
  • 31. HEATH R.L., PACKER L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189, 1968.
  • 32. BRADFORD M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2), 248, doi: 10.1016/0003-2697 (76) 90527, 1976.
  • 33. GIANNOPOLITIS C.N., RIES S.K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59 (2), 309, doi: 10.1104/pp.59.2.309, 1977.
  • 34. HAVIR E.A., MCHALE N.A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84 (2), 450, doi: 10.1104/pp.84.2.450, 1987.
  • 35. FIELDING J.L., HALL J.L. A biochemical and cytological study of peroxidase activity in roots of Pisum sativum. Journal of Experimental Botany, 29, 969, 1978.
  • 36. SHIELDS R., BURNETT W. Determination of protein-bound carbohydrate in serum by a modified anthrone method. Analytical Chemistry, 32, 885, 1960.
  • 37. LIN Y.F., AARTS M.G. The molecular mechanism of zinc and cadmi-um stress response in plants. Cell and Molecular Life Sciences, 69, 3187, 2012.
  • 38. HOSSAIN M.A., PIYATIDA P., DA-SILVA J.A.T., FUJITA M. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 2012, 37, doi:10.1155/2012/872875, 2012.
  • 39. NIE J., LIU Y., ZENG G., ZHENG B., TAN X., LIU H., XIE J., GAN C., LIU W. Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil. Environmental Science and Pollution Research, DOI 10.1007/s11356-016-6263-7, 2016.
  • 40. KHAN A.R., ULLAH I., KHAN A.L., PARK G.S., WAQAS M., HONG S.J., JUNG B.K., KWAK Y., LEE I., SHIN J.H. Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic assisted Serratia sp. RSC-14 inoculation. Environmental Science and Pollution Research, 22, 14032, doi:10.1007/s11356-015-4647-8, 2015.
  • 41. KANG S.M., KHAN A.L., WAQAS M., YOU Y.H., KIM J.H., KIM J.G., HAMAYUN M., LEE I.J. Plant growth-promoting rhi-zobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant International, 9, 673, 2014.
  • 42. MOHAMMADZADEH A., TAVAKOLI M., MOTESHAREZADEH M., CHAICHI M.R. Effects of plant growth-promoting bacteria on the phytoremediation of cadmium-contaminated soil by sunflower. Archives of Agronomy and Soil Sciences, DOI:10.1080/03650340.2016.1235781, 2016.
  • 43. GHOSH P., RATHINASABAPATHI B., MA L.Q. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L. Bioresource Technology, 102, 8756, 2011.
  • 44. MESA V., NAVAZAS A., GONZÁLEZ-GIL R., GONZÁLEZ A., WEYENS N., LAUGA B., JOSE-LUIS R., SÁNCHEZ G.J., PELÁEZ A.I. Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Applied & Environmental Microbiology, 10, doi:10.1128/AEM.03411-16, 2017.
  • 45. GRATÃO P.L., MONTEIRO C.C., TEZOTTO T., CARVALHO R.F., ALVES L.R, PETERS L.P., AZEVEDO R.A. Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals, 28(5), 803, doi: 10.1007/s10534-015-9867-3. Epub 2015 Jun 16. 2015.
  • 46. WANG Q., XIONG D., ZHAO P., YU X., TU B., WANG G. Effect of applying an arsenic-resistant and plant-growth promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. Journal of Applied Microbiology, 111, 1065, 2011.
  • 47. ISLAM F., YASMEEN T., ALI Q., MUBIN M., ALI S., ARIF M.S., HUSSAIN S., RIAZ M., ABBAS F. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. Environmental Science and Pollution Research, 23, 220, DOI 10.1007/s11356-015-5354-1, 2016.
  • 48. SANDHYA V., ALI Z.S.K., GROVER M., REDDY G., Venkateswarlu B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stres. Plant Growth Regulation, 62 (1), 21, 2010.
  • 49. NASEEM H., BANO A. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9(1), 689, DOI: 10.1080/17429145.2014.902125, 2014.
  • 50. FANG Q., FAN Z., XIE Y., WANG X., LI K., LIU Y. Screening and evaluation of the bioremediation potential of Cu/Zn-resistant, autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L. Frontiers in Plant Sciences, 7, 1487. doi: 10.3389/fpls.2016.01487, 2016.
  • 51. MOHAMED A.A., CASTAGNA A., RANIERI A., SANITA D.I. TOPPI L. Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiology and Biochemistry, 57, 15, 2012.
  • 52. KUSHWAHA A., RANI R., KUMAR S., GAUTAM A. Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environmental Reviews, 24, 39, 2016. doi: 10.1139/er-2015-0010.
  • 53. DONG Q., XU P.X., WANG Z.L. Differential cadmium distribution and translocation in roots and shoots related to hyper-tolerance between tall Fescue and Kentucky blue grass. Frontiers in Plant Sciences. 8, 113, 2017. doi: 10.3389/fpls.2017.00113.
  • 54. CHEN L., LUO S., LI X., WAN Y., CHEN J., LIU C. Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biology and Biochemistry, 68, 300, 2014.
  • 55. ASHRAF M.A., HUSSAIN I., RASHEED R., IQBAL M., RIAZ M., ARIF M.S. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. Journal of Environmental Management, 1 (198), 132, doi: 10.1016/j.jenvman.2017.04.060. Epub 2017 Apr 26, 2017.
  • 56. PRAPAGDEEA B., CHANPRASERTA M., MONGKOLSUKB S. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere, 92, 659, 2013.
  • 57. DREWNIAK L., STYCZEK A., MAJDER-LOPATKA M., SKLODOWSKA A. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environmental Pollution, 156, 1069, 2008.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-308155ce-a3f7-40db-9b64-ec77229ed971
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.