Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 6 |
Tytuł artykułu

Simulative evaluation of Pb, Cd, Cu, and Zn transfer to humans: the case of recreational parks in Poznań, Poland

Warianty tytułu
Języki publikacji
Soil samples (77) were collected in October 2009 at a depth of 0-10 cm from the following recreational parks within the city of Poznań Marcinkowski Recreational Park – MRP (18), Wodziczko Recreational Park – WRP (16), Solacki Recreational Park – SRP (26), and Park/Reserve Zurawiniec – PRZ (17). The following physical and chemical soil analyses were performed: particle size, organic carbon, pH, electrical conductivity, and cation exchange capacity. Furthermore, pseudo total amounts of Pb, Cd, Cu, and Zn were extracted by 6 moles HCl dm-3. Bioavailable forms were assayed using the physiologically based extraction test (PBET). On the basis of metal concentrations, potential intakes by children and adults were calculated and risk assessment models elaborated. Results showed that investigated city parks (MRP, WRP and SRP) exhibited a high capacity to potentially mitigate the mobility of contaminants (pH: 7.1-7.3, CEC 12.0-21.1 cmol(+)・kg⁻¹) as compared to PRZ (pHCaCl2=5.6) and both silt and clay (320 kg⁻¹), characterized by practically weak buffering properties. The concentrations of all metals exceeded background levels by factors varying, as follows: Cd 6-14; Pb 2-6; Cu 2-3; and Zn 1-4-fold. This enrichment was observed even in the case of the PRZ site, the least anthropogenically impacted. Potential metal intakes by children (particularly) and adults, in cases of accidental swallowing, exhibited the quantitative pattern: Zn > Pb > Cu > Cd, irrespective of investigated parks. Amounts of metal intakes were higher for children, with 94% as compared to 6%, for adults with the following contribution of parks: MRP (42%) > WRP (27%) > SRP (21%) > PRZ (10%). Risk assessment models generated coefficients of determination (R²) varying from 0.57 to 0.81 with a sequence: Zn > Cd > Cu > Pb, which implies that 81, 67, 65, and 57% of respective potential metal intakes can be basically predicted by the knowledge of the level of bioavailable metals fractions.
Słowa kluczowe
Opis fizyczny
  • Department of Agricultural Chemistry and Environmental Biogeochemistry, Poznań University of Life Sciences, Wojska Polskiego 71F, 60-625, Poznań, Poland
  • Department of Agricultural Chemistry and Environmental Biogeochemistry, Poznań University of Life Sciences, Wojska Polskiego 71F, 60-625, Poznań, Poland
  • 1. NRIAGU J.O. A silent epidemic of environmental metal poisoning? Environ. Pollut. 50, 139, 1988.
  • 2. SAŇKA M., STRNAD M., VONDRA J., PATERSON E. Sources and plant contamination in an urban environment and possible assessment methods. Intern. J. Environ. Anal. Chem. 59, 327, 1995.
  • 3. ELIK A. Heavy metal accumulation in street dust samples in Sivas. Commun. Soil Sci. Plant Anal. 34, (1-2), 145, 2003.
  • 4. POKPO J., OLSZEWSKI S., HUKAŁOWICZ K., MARKIEWICZ K., BORAWSKA M.H., SZEPAROWICZ P. Lead, cadmium, copper and zinc concentrations in blood and hair of mothers of children with locomotor system malformations. Pol. J. Environ. Stud. 12, (3), 375, 2003.
  • 5. KONDEJ D. Heavy metals. Advantages and threats for human heath and environment. Bezpieczeństwo Pracy, 2, 25, 2007 [In Polish].
  • 6. CHAO W., XIAO-CHEN L., LI-MIN Z., PEI-FANG W., ZHI-YONG G. Pb, Cu, Zn and Ni concentrations in vegetables in relation to their extractable fractions in soils in suburban areas of Nanjing, China. Pol. J. Environ. Stud. 16, (2), 199, 2007.
  • 7. LINTON R.W., NATUCSH D.F.S., SOLOMON R.L., EVANS C.A. Physico-chemical characterization of Pb in urban dusts. Environ. Sci. Technol. 14, 158, 1980.
  • 8. MARKIEWICZ-PATKOWSKA J., HURSTHOUSE A., PRZYBYLA-KIJ H. The interactions of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with typical mixed brownfield deposit. Environ. Intern. 31, 523, 2005.
  • 9. VIETMEIER D., VIERECK-GOTTE L., BIESADA M., EWERS U., GZYL J., TERAKOWSKI M. Practical manual for sampling, analysis and assessment of soil contamination. German Federal Environmental Agency Report II 3.3-91005-14/3, 1997.
  • 10. LJUNG K., OOMEN A., DUITS M., SELINUS O., BERGLUND M. Bioaccessibility of metals in urban playground soils. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 42, (9), 1241, 2007.
  • 11. JASIEWICZ C., BARAN A., ANTONKIEWICZ J. Assessment of chemical composition and sanitary state of Sand in selected sandboxes in Krakow. J. Elementol. 14, (1), 79, 2009.
  • 12. NATIONAL ACADEMY OF SCIENCES. Medical and Biological Effects of Environmental Pollutants: Copper. National Research Council, Washington, DC, 1977.
  • 13. DUTKIEWICZ T., KULKA E., SOKOŁOWSKA D. Evaluation of lead and cadmium intake pathways at children from industrial areas. Bromat. Chemic. Toksykol. XV, (1-2), 41, 1982 [In Polish].
  • 14. US EPA. Guidelines for carcinogen Risk Assessment Register (51 FR 33992-34003) Washington, D.C., 1986.
  • 15. BIESIADA M (Ed.). Health risk evaluation of inhabitants of Wiślinki as relatred to the impact of phosphate-gypsum slag heap. Inst. Med. Pr. i Zdrow. Środow., Sosnowiec, pp. 72, 2006 [In Polish].
  • 16. KULKA E. Assessment of pre-schoolers exposure to lead and cadmium. Long-term programme – Environment and Health. Instytut Ekologii Terenow Uprzemysłowionych, 6, 6, 2004 [In Polish].
  • 17. MYŚLIWIEC M., BALCERSKA A., ZORENA K., JĘDRZEJCZYK A., MALINOWSKA E., MYŚLIWSKA J. Increasing incidence of diabetes mellitus type 1 in children – the role of environmental factor. Pol. J. Environ. Stud. 16, (1), 109, 2007.
  • 18. US EPA. Guidelines for Human Health Risk Assessment of Chemical Mixtures. Federal Register (51 FR 34014-34025) Washington, D.C., 1986.
  • 19. JAKUBOWSKI M. Quantitative evaluation of chemicals intake. In: Basic methods of heath risk assessment. Eds. Barański B. and Szymczak W., IMP im. Nofera J., Łodź, 1995 [In Polish].
  • 20. CENTER FOR DISEASE CONTROL: Preventing Lead Poisoning in Children. Atlanta, CDC, 1991.
  • 21. PENTSCHEW A. Morphology and morphogenesis of lead encephalopathy. Acta Neuropathologica 5, 133, 1965.
  • 22. WHO. Health risks of heavy metals from long-range transboundary air pollution. WHO regional Office for Europe, Scherfigsvej 8, DK-2100 Copenhagen, Denmark. pp. 144, 2007.
  • 23. MOREL F. Detection of child saturnism by the family doctor. Rev. Prat. Med. Gen. 15, (531), 577, 2001.
  • 24. SZUMACHER I. Ecological functions of urban parks. Prace i Studia Geograficzne 36, 107, 2005 [In Polish].
  • 25. URBAŃSKI P., SZPAKOWSKA B., RASZEJA E. Recreational values of green areas of Poznan. Nauka Przyr. Technol. 2, (4)#27, 1, 2008 [In Polish].
  • 26. GUPTA S.K., VOLLMER M.K., KREBS R. The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil of three-level risk assessment and risk management. Sci. total. Environ. 178, 11, 1996.
  • 27. RUBY M.V., DAVIS A., SCHOOF R., EBERLE S., SELLSTONE C.M. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ. Sci. Technol. 30, 422, 1996.
  • 28. RUBY M.V., SCHOOF R., BRATTIN W., GOLDADE M., POST G., HANOIS M., MOSBY D.E., CASTEEL S.W., BERTI W., CARPENTER M., EDWARDS D., CRAGIN D., CHAPPELL W. Advances in evaluation the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ. Sci. Technol. 33, 3697, 1999.
  • 29. GEE G.W., BAUDER J.W. Particle size analysis. In: Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Klute A. (Ed.) 2nd ed. pp. 383-411. Agron. Monogr. 9 ASA and SSSA, Madison, WI, 1986.
  • 30. POLISH STANDARD. Polish Standardisation Committee, ref. PrPN-ISO 10390 (E), Soil quality and pH determination. First edition, 1994.
  • 31. RHOADES J.D. Salinity: Electrical conductivity and total dissolved solids. P. 417-435. In: Sparks D.L. et al. (Ed). Methods of soil analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI. 1996.
  • 32. NELSON D.W., SOMMERS L.E. Total carbon, organic carbon and organic matter. In SPARKS D.L. (Ed.) Methods of Soil Analysis, pp. 961-1010. Part 3. Chemical Methods. SSA Book Ser. 5. SSSA, Madison, WI, 1996.
  • 33. THOMAS G.W. Exchangeable cations. (pp. 159-165). Methods of Soil Analysis, Part 2. Second Edition, Page A. L., Miller R. H. and Keeney D.R. Madison, Wisconsin, USA. 1982.
  • 34. MADRID L., DIAZ-BARRIENTOS E., REINOSO R., MADRID F. Metals in urban soils of Sevilla: seasonal changes and relations with other soil components and plant contents. Eur. J. Soil Sci. 55, 209, 2004.
  • 35. BIRKE M., RAUCH U. Urban geochemistry: investigation in the Berlin metropolitan area. Environ. Geochem. Health, 22, 233, 2000.
  • 36. De KIMPE C.R., MOREL J.L. Urban soil management: a growing concern. Soil Sci. 165, 31, 2000.
  • 37. McBRIDE M.B. Reaction controlling heavy metal solubility in soils. Adv. Soil Sci., 10, 2, 1989.
  • 38. KABATA-PENDIAS A., PENDIAS H. Trace Elements in Soils and Plants, (2nd edition). CRC Press, pp. 365, 1992.
  • 39. PATERSON E., SAŇKA M., CLARK L. Urban soils as pollution sinks – a case study from Aberdeen, Scotland. Applied Geochem., 11, 129, 1996.
  • 40. CZARNOWSKA K. Total heavy metals content in rocks as geochemical background of soils. Rocz. Glebozn. T. XLVII Supl. 43, 1996 [In Polish].
  • 41. DAVRANCHE M., BEAUFRETON S., BOLLINGER J.C. Influence of carbonates on the surface charge of a natural solid. Jour. Coll. Interf. Sci. 249, 113, 2003.
  • 42. DIATTA J.B., KOCIAŁKOWSKI W.Z., GRZEBISZ W. Lead and zinc partition coefficients of selected soils evaluated by Langmuir, Freundlich, and Linear isotherms. Commun. Soil Sci. Plant Anal., 34, (17&18), 2939, 2003.
  • 43. SOKOŁOWSKA Z. The role of surface heterogeneity on adsorption processes occurring in soils. Problemy Agrofizyki, 58, 1-170, 1989 [In Polish].
  • 44. ABD-ELFATTAH A., WADA K. Adsorption of lead, copper, zinc, cobalt and cadmium by soils that differ in cation exchange materials. Jour. Soil Sci., 32, 271, 1981.
  • 45. APPEL C., MA L. Concentration, pH and surface charge effects on cadmium and lead sorption in three tropical soils. Jour. Environ. Qual. 31, 581, 2002.
  • 46. SANDERSON R. T. Electronegativity and bond energy. J. Am. Chem. Soc. 105, (8), 2259, 1983.
  • 47. DIATTA J.B., GRZEBISZ W., WIATROWSKA K. Competitivity, selectivity, and heavy metals-induced alkaline cation displacement in soils. Soil Sci. Plant Nutr. 50, (6), 899, 2004.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.