PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 3 |
Tytuł artykułu

Biohydrogen production by Antarctic psychrotolerant Klebsiella sp. ABZ11

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lower temperature biohydrogen production has always been attractive, due to the lower energy requirements. However, the slow metabolic rate of psychrotolerant biohydrogen-producing bacteria is a common problem that affects their biohydrogen yield. This study reports on the improved substrate synthesis and biohydrogen productivity by the psychrotolerant Klebsiella sp. strain ABZ11, isolated from Antarctic seawater sample. The isolate was screened for biohydrogen production at 30°C, under facultative anaerobic condition. The isolate is able to ferment glucose, fructose and sucrose with biohydrogen production rate and yield of 0.8 mol/l/h and 3.8 mol/g, respectively at 10 g/l glucose concentration. It also showed 74% carbohydrate uptake and 95% oxygen uptake ability, and a wide growth temperature range with optimum at 37°C. Klebsiella sp. ABZ11 has a short biohydrogen production lag phase, fast substrate uptake and is able to tolerate the presence of oxygen in the culture medium. Thus, the isolate has a potential to be used for lower temperature biohydrogen production process.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
67
Numer
3
Opis fizyczny
p.283-290,fig.,ref.
Twórcy
autor
  • Ibrahim Badamasi Babangida University, Lapai, Niger State, Nigeria
  • Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
  • Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
autor
  • Geoscience and Digital Earth Centre (INSTeG), Universiti Teknologi Malaysia, Johor, Malaysia
autor
  • Sports Innovation Technology Centre (SITC), Universiti Teknologi Malaysia, Johor, Malaysia
autor
  • Geoscience and Digital Earth Centre (INSTeG), Universiti Teknologi Malaysia, Johor, Malaysia
autor
  • Automotive Development Centre (ADC), Universiti Teknologi Malaysia, Johor, Malaysia
autor
  • Sports Innovation Technology Centre (SITC), Universiti Teknologi Malaysia, Johor, Malaysia
autor
  • Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
  • National Antarctic Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
autor
  • Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, USA
  • Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
autor
  • Department of Microbiology, Bauchi State University Gadau, Bauchi, Nigeria
autor
  • Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
Bibliografia
  • Alvarado-Cuevas ZD, López-Hidalgo AM, Ordoñez LG, Oceguera-Contreras E, Ornelas-Salas JT, De León-Rodríguez A. 2015. Biohydrogen production using psychrophilic bacteria isolated from Antarctica. Int J Hydrog Energy. 40(24):7586–7592.
  • Alvarez-Guzmán CL, Oceguera-Contreras E, Ornelas-Salas JT, Balderas-Hernández VE, De León-Rodríguez A. 2016. Biohydrogen production by the psychrophilic G088 strain using single carbohydrates as substrate. Int J Hydrog Energy. 41(19):8092–8100.
  • Brat K, Sedlacek I, Sevcikova A, Merta Z, Laska K, Sevcik P. 2016. Imported anthropogenic bacteria may survive the Antarctic winter and introduce new genes into local bacterial communities. Pol Polar Res. 37(1):89–104.
  • Pan CM, Fan YT, Zhao P, Hou HW. 2008. Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3. Int J Hydrog Energy. 33(20):5383–5391.
  • Carrión O, Miñana-Galbis D, Montes MJ, Mercadé E. 2011. Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int J Syst Evol Microbiol. 61(10):2401–2405.
  • Chookaew T, Sompong O, Prasertsan P. 2012. Fermentative production of hydrogen and soluble metabolites from crude glycerol of biodiesel plant by the newly isolated thermotolerant Klebsiella pneumoniae TR17. Int J Hydrog Energy. 37(18):13314–13322.
  • Corr MJ, Murphy JA. 2011. Evolution in the understanding of [Fe]-hydrogenase. Chem Soc Rev. 40(5):2279–2292.
  • Delille D. 1992. Marine bacterioplankton at the Weddell Sea ice edge, distribution of psychrophilic and psychrotrophic populations. In: Hempel G. (eds) Weddell Sea Ecology. Springer, Berlin, Heidelberg. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39(4):783–791.
  • Ginkel SV, Sung S, Lay JJ. 2001. Biohydrogen production as a function of pH and substrate concentration. Env Sci Technol. 35(24):4726–4730.
  • Hahn-Hägerdal B, Jeppsson H, Skoog K, Prior BA. 1994. Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb Technol. 16(11):933–943.
  • Hallenbeck PC, Abo-Hashesh M, Ghosh D. 2012. Strategies for improving biological hydrogen production. Bioresource Technol. 110:1–9.
  • Islam R, Cicek N, Sparling R, Levin D. 2006. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Applied Microbiol Biotechnol. 72:576–583.
  • Johansen JE, Bakke R. 2006. Enhancing hydrolysis with microaeration. Water Sci Technol. 53(8):43–50.
  • Kamalaskar LB, Dhakephalkar PK, Meher KK, Ranade DR. 2010. High biohydrogen yielding Clostridium sp. DMHC-10 isolated from sludge of distillery waste treatment plant. Int J Hydrog Energy. 35(19):10639–10644.
  • Kargel JS, Dimas VM, Kao DS, Heggers JP, Chang P, Phillips LG. 2008. Empiric antibiotic therapy for seawater injuries: A four-seasonal analysis. Plast Reconstr Surgery. 121(4):1249–1255. Khan MA, Ngo HH, Guo W, Liu Y, Zhang X, Guo J, Chang SW, Nguyen DD, Wang J. 2017. Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renew Energy. in press.
  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):1870–1874.
  • Lavin PL, Yong ST, Wong CM, De Stefano M. 2016. Isolation and characterization of Antarctic psychrotroph Streptomyces sp. strain INACH3013. Antarct Sci. 28(6):433–442.
  • Lettinga G, Rebac S, Zeeman G. 2001. Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol. 19(9):363–370.
  • Liu F, Fang B. 2007. Optimization of bio‐hydrogen production from biodiesel wastes by Klebsiella pneumoniae. Biotechnol J. 2(3): 374–380.
  • Lu L, Ren N, Zhao X, Wang H, Wu D, Xing D. 2011. Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Env Sci. 4(4):1329–1336.
  • Miandad R, Rehan M, Ouda O, Khan M, Shahzad K, Ismail I, Nizami A. 2017. Waste-to-hydrogen energy in Saudi Arabia: challenges and perspectives. Biohydrogen Production: Sustainability of Current Technology and Future Perspective. India: Springer. p. 237–252.
  • Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31(3):426–428.
  • Minnan L, Jinli H, Xiaobin W, Huijuan X, Jinzao C, Chuannan L, Fengzhang Z, Liangshu X. 2005. Isolation and characterization of a high H₂-producing strain Klebsiella oxytoca HP1 from a hot spring. Res Microbiol. 156(1):76–81.
  • Morita RY. 1975. Psychrophilic bacteria. Bacteriol Rev. 39(2): 144–167.
  • Niu K, Zhang X, Tan WS, Zhu ML. 2010. Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. Int J Hydrog Energy. 35(1):71–80.
  • Peeters K, Verleyen E, Hodgson DA, Convey P, Ertz D, Vyverman W, Willems A. 2012. Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol. 35(4):543–554.
  • Pesciaroli C, Cupini F, Selbmann L, Barghini P, Fenice M. 2012. Temperature preferences of bacteria isolated from seawater collected in Kandalaksha Bay, White Sea, Russia. Polar Biol. 35(3):435–445.
  • Pikuta EV, Menes RJ, Bruce AM, Lyu Z, Patel NB, Liu Y, Hoover RB, Busse HJ, Lawson PA, Whitman WB. 2016. Raineyella antarctica gen. nov., sp. nov , a psychrotolerant, d-amino-acid-utilizing anaerobe isolated from two geographic locations of the Southern Hemisphere. Int J Syst Evol Microbiol. 66(12):5529–5536.
  • Ramos I, Fdz-Polanco M. 2013. The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: results from a pilot-scale digester treating sewage sludge. Bioresour Technol. 140:80–85.
  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 4(4):406–425.
  • Santana M. 2008. Presence and expression of terminal oxygen reductases in strictly anaerobic sulfate-reducing bacteria isolated from salt-marsh sediments. Anaerobe. 14(3):145–156.
  • Shirron N, Korem M, Shuster A, Leikin-Frenkel A, Rosenberg M. 2008. Effect of alcohol on bacterial hemolysis. Curr Microbiol. 57(4):318–325.
  • Silvaa AS, Júniora AMO, de Farias Silvab CE, Abud AKS. 2016. Inhibitors Influence on Ethanol Fermentation by Pichia stipitis. Chem Eng. 49:367–372.
  • Song ZX, Li WW, Li XH, Dai Y, Peng XX, Fan YT, Hou HW. 2013. Isolation and characterization of a new hydrogen-producing strain Bacillus sp. FS2011. Int J Hydrog Energy. 38(8):3206–3212.
  • Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S. 2010. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H₂ storage. Annual Rev Biochem. 79:507–536.
  • Xiong H, Carter RA, Leiner IM, Tang Y-W, Chen L, Kreiswirth BN, Pamer EG. 2015. Distinct contributions of neutrophils and CCR2+ monocytes to pulmonary clearance of different Klebsiella pneumoniae strains. Infect Immun. 83(9):3418–3427.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-2fd2962b-8dcf-4591-9251-41245d589c04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.