PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 58 | 1 |

Tytuł artykułu

Spatial genetic structure within populations of Sorbus torminalis (L.) Crantz: comparative analysis of the self-incompatibility locus and nuclear microsatellites

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Distribution of genetic diversity among and within plant populations may depend on the mating system and the mechanisms underlying the efficiency of pollen and seed dispersal. In self-incompatible species, negative frequency- dependent selection acting on the self-incompatibility locus is expected to decrease intensity of spatial genetic structure (SGS) and to reduce population differentiation. We investigated two populations (peripheral and more central) of wild service tree (Sorbus torminalis (L.) Crantz), a self-incompatible, scattered tree species to test the differences in population differentiation and spatial genetic structure assessed at the self-incompatibility locus and neutral nuclear microsatellites. Although, both populations exhibited similar levels of genetic diversity regardless of the marker type, significant differentiation was noticed. Differences between FST and RST suggested that in the case of microsatellites both mutations and drift were responsible for the observed differentiation level, but in the case of the S-RNase locus drift played a major role. Microsatellites indicated a similar and significant level of spatial genetic structure in both populations; however, at the S-RNase locus significant spatial genetic structure was found only in the fragmented population located at the north-eastern species range limits. Differences in SGS between the populations detected at the self-incompatibility locus were attributed mainly to the differences in fragmentation and population history.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

58

Numer

1

Opis fizyczny

p.7-17,fig.,ref.

Twórcy

  • Department of Genetics, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University of Bydgoszcz, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
autor
  • Department of Genetics, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University of Bydgoszcz, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
autor
  • Department of Genetics, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University of Bydgoszcz, Chodkiewicza 30, 85-064 Bydgoszcz, Poland

Bibliografia

  • BALLOUX F, and LUGON-MOULIN N. 2002. The estimation of population differentiation with microsatellite markers. Molecular Ecology 11: 155–165.
  • BARRETT SC. 2002. The evolution of plant sexual diversity. Nature Reviews Genetics 3(4): 274–284.
  • BOUCHER W. 1993. A deterministic analysis of self-incompatibility alleles. Journal of Mathematical Biology 31(2): 149–155.
  • BEDNORZ L. 2004. Rozmieszczenie i zasoby Sorbus torminalis (Rosaceae: Maloideae) w Polsce. Fragmenta Floristica et Geobotanica Polonica 11(1): 105–121.
  • BEDNORZ L. 2007. The wild service tree Sorbus torminalis (L.) Crantz in plant communities in Poland. Dendrobiology 57: 49–54.
  • BEDNORZ L. 2009. Jak chronić jarząb brekinię (Sorbus torminalis) w polskich lasach. Sylwan 153(5): 354–360.
  • BEDNORZ L. 2010. Jarząb brekinia Sorbus torminalis (L.) Crantz w Polsce. Bogucki Wydawnictwo Naukowe. Poznań.
  • BEDNORZ L, MYCZKO L, and KOSINSKI P. 2006. Genetic variability and structure of the wild service tree (Sorbus torminalis (L.) Crantz) in Poland. Silvae Genetica 55(4–5): 197–201.
  • BUSCH JW, and SCHOEN DJ. 2008. The evolution of self-incompatibility when mates are limiting. Trends in Plant Science 13(3): 128–136.
  • CHYBICKI IJ, and BURCZYK J. 2009. Simultaneous estimation of null alleles and inbreeding coefficients. Journal of Heredity 100(1): 106–113.
  • DEMESURE B, LE GUERROUÉ B, LUCCHI G, PRAT D, and PETIT RJ. 2000. Genetic variability of a scattered temperate forest tree: Sorbus torminalis L. (Crantz). Annals of Forest Science 57(1): 63–71.
  • DEMESURE-MUSCH B, and ODDOU-MURATORIO S. 2004. EUFORGEN Technical guidelines for genetic conservation and use for wild service tree (Sorbus torminalis). Bioversity International.
  • DERING M, CHYBICKI IJ, and RACZKA G. 2015. Clonality as a driver of spatial genetic structure in populations of clonal tree species. Journal of Plant Research 128: 731–745.
  • DOYLE JJ, and DOYLE JH. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.
  • EPPERSON BK, and ALLARD RW. 1989. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121: 369–377.
  • FENSTER CB, VEKEMANS X, AND HARDY OJ. 2003. Comparison of direct and indirect estimates of gene flow in Chamaecrista fasciculate (Leguminosae). Evolution 57: 995–1007.
  • GANOPOULOS I, ARAVANOPOULOS F, ARGIRIOU A, and TSAFTARIS A. 2012. Genome and population dynamics under selection and neutrality: an example of S-allele diversity in wild cherry (Prunus avium L.). Tree Genetics and Genomes 8: 1181–1190.
  • GAPARE WJ, and AITKEN SN. 2005. Strong spatial genetic structure in peripheral but not core populations of Sitka spruce [Picea sitchensis (Bong.) Carr.]. Molecular Ecology 14: 2659–2667.
  • GEORGE JP, KONRAD H, COLLIN E, THEVENET J, BALLIAN D, IDZOJTIC M, KAMM U, ZHELEV P, and GEBUREK T. 2015. High molecular diversity in the true service tree (Sorbus domestica) despite rareness: data from Europe with special reference to the Austrian occurrence. Annals of Botany 115: 1105–1115.
  • GIANFRANCESCHI L, SEGLIAS N, TARCHINI R, KOMJANC M, and GESSLER C. 1998. Simple sequence repeats for the genetic analysis of apple. Theoretical and Applied Genetics 96(8): 1069–1076.
  • GONZÁLEZ-GONZÁLEZ EA, GONZÁLEZ-PÉREZ MA, RIVERO E, and SOSA PA. 2010. Isolation and characterization of microsatellite loci in Sorbus aria (Rosaceae). Conservation Genetics Resources 2: 341–343.
  • GOUDET J. 1995. FSTAT (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity 86: 485–86.
  • HAMRICK J, and GODT M. 1990. Allozyme diversity in plant species. In: Brown A, Clegg MT, Kahler AL, and Weir B [eds.] Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Sunderland, MA.
  • HARDY OJ, and VEKEMANS X. 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2(4): 618–620.
  • HARDY OJ, CHARBONNEL N, FRÉVILLE H, and HEUERTZ M. 2003. Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163(4): 1467–1482.
  • HOEBEE SE, MENN C, ROTACH P, FINKELDEY R, and HOLDEREGGER R. 2006. Spatial genetic structure of Sorbus torminalis: The extent of clonal reproduction in natural stands of a rare tree species with a scattered distribution. Forest Ecology and Management 226(1): 1–8.
  • HOEBEE SE, ARNOLD U, DÜGGELIN C, GUGERLI F, BRODBECK S, ROTACH P, and HOLDEREGGER R. 2007. Mating patterns and contemporary gene flow by pollen in a large continuous and a small isolated population of the scattered forest tree Sorbus torminalis. Heredity 99(1): 47–55.
  • HOLDEREGGER R, HÄNER R, CSENSCSICS D, ANGELONE S, and HOEBEE S. 2008. S-allele diversity suggests no mate limitation in small populations of a self-incompatible plant. Evolution 62: 2922–2928.
  • IKEDA K, USHIJIMA K, YAMANE H, TAO R, HAUCK NR, SEBOLT AM, and IEZZONI A. 2005. Linkage and physical distances between the S haplotype S-RNase and SFB in sweet cherry. Sexual Plant Reproduction 17: 289–296.
  • JANKOWSKA-WROBLEWSKA S, MEYZA K, SZTUPECKA E, KUBERA L, and BURCZYK J. 2016. Clonal structure and high genetic diversity at peripheral populations of Sorbus torminalis (L.) Crantz. iForests – Biogeosciences and Forestry (in press).
  • JOLIVET C, HÖLTKEN AM, LIESEBACH H, STEINER W, and DEGEN B. 2010. Spatial genetic structure in wild cherry (Prunus avium L.): I. variation among natural populations of different density. Tree Genetics and Genomes 7: 271–283.
  • KALINOWSKI ST, TAPER ML, and MARSHALL TC. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16(5): 1099–1106.
  • KAMAU E, CHARLESWORTH B, and CHARLESWORTH D. 2007. Linkage disequilibrium and recombination rate estimates in the self-incompatibility region of Arabidopsis lyrata. Genetics 176(4): 2357–2369.
  • KAMM U, ROTACH P, GUGERLI F, SIROKY M, EDWARDS P, and HOLDEREGGER R. 2009. Frequent long-distance gene flow in a rare temperate forest tree (Sorbus domestica) at the landscape scale. Heredity 103: 476–482.
  • KAO TH, and TSUKAMOTO T. 2004. The molecular and genetic bases of S-RNase-based self-incompatibility. The Plant Cell Online 16(1): 72–83.
  • KATO SH, IWATA Y, TSUMURA Y, and MUKAI Y. 2007. Distribution of S-alleles in island populations of flowering cherry, Prunus lannesiana var. speciosa. Genes and Genetic Systems 82: 65–75.
  • KNOWLES P, PERRY DJ, and FOSTER HA. 1992. Spatial genetic structure in two tamarack (Larix laricina (Du Roi) K. Koch) populations with differing establishment histories. Evolution 46: 572–576.
  • KUČEROVÁ V, HONEC M, PAULE L, ZHELEV P, and GÖMÖRY D. 2010. Genetic differentiation of Sorbus torminalis in Eastern Europe as determined by microsatellite markers. Biologia 65: 817–821.
  • LATTA RG, LINHART YB, FLECK D, and ELLIOT M. 1998. Direct and indirect estimates of seed versus pollen movement within a population of ponderosa pine. Evolution 52: 61–67.
  • LAWRENCE MJ. 2000. Population genetics of the homomorphic self-incompatibility polymorphisms in flowering plants. Annals of Botany 85(1): 221–226.
  • LEDUCQ JB, LLAURENS V, CASTRIC V, SAUMITOU-LAPRADE P, HARDY OJ, and VEKEMANS X. 2011. Effect of balancing selection on spatial genetic structure within populations: theoretical investigations on the self-incompatibility locus and empirical studies in Arabidopsis halleri. Heredity 106(2): 319–329.
  • LIEBHARD R, GIANFRANCESCHI L, KOLLER B, RYDER CD, TARCHINI R, VAN DE WEG E, and GESSLER C. 2002. Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Molecular Breeding 10: 217–241.
  • LILJEFORS A. 1955. Cytological studies in Sorbus. Acta Horti Bergiani 17: 47–113.
  • LOISELLE BA, SORK VL, NASON J, and GRAHAM C. 1995. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82(11): 1420–1425.
  • MURIHEAD CA. 2001. Consequences of population structure on genes under balancing selection. Evolution 55(8): 1532–1541.
  • ODDOU-MURATORIO S, ALIGON C, DECROOCQ S, PLOMION C, LAMANT T, and MUSH-DEMESURE B. 2001. Microsatellite primers for Sorbus torminalis and related species. Molecular Ecology Notes 1: 297–299.
  • ODDOU-MURATORIO S, and KLEIN EK. 2008. Comparing direct vs. indirect estimates of gene flow within a population of a scattered tree species. Molecular Ecology 17(11): 2743–2754.
  • RASMUSSEN KK, and KOLLMANN J. 2004. Poor sexual reproduction on the distribution limit of the rare tree Sorbus torminalis. Acta Oecologica 25(3): 211–218.
  • RASMUSSEN KK, and KOLLMANN J. 2007. Low genetic diversity in small peripheral populations of a rare European tree (Sorbus torminalis) dominated by clonal reproduction. Conservation Genetics 9: 1533–1539.
  • RASPÉ O, and KOHN JR. 2002. S-allele diversity in Sorbus aucuparia and Crataegus monogyna (Rosaceae: Maloideae). Heredity 88(6): 458–465.
  • RASPÉ O, and KOHN JR. 2007. Population structure at the S-locus of Sorbus aucuparia L. (Rosaceae: Maloideae). Molecular Ecology 16(6): 1315–1325.
  • RICHMAN A. 2000. Evolution of balanced genetic polymorphism. Molecular Ecology 9(12): 1953–1963.
  • RICHMAN AD, UYENOYAMA MK, and KOHN JR. 1996. Allelic diversity and gene genealogy at the self-incompatibility locus in the Solanaceae. Science 273(5279): 1212–1216.
  • ROSENBERG MS, and ANDERSON CD. 2011. PASSaGE: Pattern Analysis. Spatial Statistics and Geographic Exegesis. Version 2. Methods in Ecology and Evolution 2(3): 229–232.
  • ROUSSET F. 2008. GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8: 103–106.
  • SCHIERUP MH, VEKEMANS X, and CHARLESWORTH D. 2000. The effect of subdivision on variation at multi-allelic loci under balancing selection. Genetical Research 76: 51–62.
  • SCHIERUP MH, BECHSGAARD JS, NIELSEN LH, and CHRISTIANSEN FB. 2006. Selection at work in self-incomaptible Arabidopsis lyrata: mating patterns in a natural population. Genetics 172: 477–484.
  • SCHNABEL A, NASON JD, and HAMRICK JL. 1998. Understanding the population structure of Gleditsia triacanthos L.: seed dispersal and variation in female reproductive success. Molecular Ecology 7: 819–832.
  • SCHUELER S, TUSCH A, and SCHOLZ F. 2006. Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites. Molecular Ecology 15(11): 3231–3243.
  • SHURI K, SAIKA K, JUNKO K, MICHIHARU K, NAGAMITSU T, IWATA H, and MUKAI Y. 2012. Impact of negative frequency-dependent selection on mating pattern and genetic structure: a comparative analysis of the S-locus and nuclear SSR loci in Prunus lannesiana var. speciosa. Heredity 109(3): 188–198.
  • SONNEVELD T, TOBUTT KR, and ROBBINS TP. 2003. Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theoretical and Applied Genetics 107(6): 1059–1070.
  • SONNEVELD T, ROBBINS TP, and TOBUTT KR. 2006. Improved discrimination of self-incompatibility S-RNase alleles in cherry and high throughput genotyping by automated sizing of first intron polymerase chain reaction products. Plant Breeding 125: 305–307.
  • STOECKEL S, CASTRIC V, MARIETTE S, and VEKEMANS X. 2008. Unequal allelic frequencies at the self-incompatibility locus within local populations of Prunus avium L.: an effect of population structure? Journal of Evolutionary Biology 21(3): 889–899.
  • STOECKEL S, KLEIN EK, ODDOU-MURATORIO S, MUSCH B, and MARIETTE S. 2012. Microevolution of S-allele frequencies in wild cherry populations: respective impacts of negative frequency dependent selection and genetic drift. Evolution 66(2): 486–504.
  • SUAREZ-GONZALEZ A, and GOOD SV. 2013. Pollen limitation and reduced reproductive success are associated with local genetic effects in Prunus virginiana, a widely distributed self-incompatible shrub. Annals of Botany 113: 595–605.
  • TARNAWSKI A. 2001. Jarząb brekinia w Regionie Grudziądzkim. Sar Pomorze.
  • USHIJIMA K, SASSA H, DANDEKAR, AM, GRADZIEL TM, TAO R, and HIRANO H. 2003. Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15: 771–781.
  • UYENOYAMA MK, ZHANG Y, and NEWBIGIN E. 2001. On the origin of self-incompatibility haplotypes: transition through self-compatible intermediates. Genetics 157(4): 1805–1817.
  • VALLEJO-MARÍN M, DA SILVA EM, SARGENT RD, and BARRETT SC. 2010. Trait correlates and functional significance of heteranthery in flowering plants. New Phytologist 188(2): 418–425.
  • VEKEMAN X, and HARDY OJ. 2004. New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13: 921–935.
  • WANG J. 2011. Unbiased relatedness estimation in structured populations. Genetics 187(3): 887–901.
  • WAPLES RS, and DO C. 2010. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications 3: 244–262.
  • WRIGHT S. 1939. The distribution of self-sterility alleles in populations. Genetics 24: 538–552.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2f95e7fe-9d18-4a1a-92ae-9a609dfa09b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.