PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 08 |

Tytuł artykułu

Modulation of nutrient acquisition and polyamine pool in salt-stressed wheat (Triticum aestivum L.) plants inoculated with arbuscular mycorrhizal fungi

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Two wheat (Triticum aestivum L.) cultivars, Sids 1 and Giza 168, were grown under non-saline or saline conditions (4.7 and 9.4 dS m-1) with and without arbuscular mycorrhizal fungi (AMF) inoculation. Salt stress considerably decreased root colonization, plant productivity and N, P, K⁺, Fe, Zn and Cu concentrations, while it increased Na+ level, particularly in Giza 168. Mycorrhizal colonization significantly enhanced plant productivity and N, P, K⁺, Fe, Zn and Cu acquisition, while it diminished Na+ uptake, especially in Sids 1. Salinity increased putrescine level in Giza 168, however, values of spermidine and spermine increased in Sids 1 and decreased in Giza 168. Mycorrhization changed the polyamine balance under saline conditions, an increase in putrescine level associated with low contents of spermidine and spermine in Giza 168 was observed, while Sids 1 showed a decrease in putrescine and high increase in spermidine and spermine. Moreover, mycorrhizal inoculation significantly reduced the activities of diamine oxidase and polyamine oxidase in salt-stressed wheat plants. Modulation of nutrient acquisition and polyamine pool can be one of the mechanisms used by AMF to improve wheat adaptation to saline soils. This is the first report dealing with mycorrhization effect on diamine oxidase and polyamine oxidase activities under salt stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

08

Opis fizyczny

p.2601-2610,fig.,ref.

Twórcy

autor
  • Department of Plant Physiology, Faculty of Agriculture, Cairo University, Giza, Egypt
autor
  • Genetic Engineering and Biotechnology Research Division, Department of Microbial Chemistry, National Research Center, Giza 12311, Egypt

Bibliografia

  • Abdel-Fattah GM, Asrar AA (2012) Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol Plant 34:267–277
  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7
  • Allen SE (1989) Chemical analysis of ecological materials, 2nd edn. Blackwell, Oxford
  • Asthir B, Duffus CM, Smith RC, Spoor W (2002) Diamine oxidase is involved in H2O2 production in the chalazal cells during barley grain filling. J Exp Bot 53:677–682
  • Azcon-Aguilar C, Azcon R, Barea JM (1979) Endomycorrhizal fungi and rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature 279:325–327
  • Burleigh SH, Kristensen BK, Bechmann IE (2003) A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol Biol 52:1077–1088
  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281
  • Cottenie A, Verloo M, Kiekens L, Velghe G, Camerlynck R (1982) Chemical analysis of plants and soils. In: Laboratory of Analytical and Agrochemistry. State University, Ghent, Belgium, pp 14–24
  • Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625
  • El Ghachtouli N, Paynot M, Morandi D, Martin-Tanguy J, Gianinazzi S (1995) The effect of polyamines on endomycorrhizal infection of wild-type Pisum sativum, cv. Frisson (nod + myc+) and two mutants (nod-myc+ and nod - myc-). Mycorrhiza 5:189–192
  • El-Bassiouny HMS, Bekheta MA (2005) Effect of salt stress on relative water content, lipid peroxidation, polyamines, amino acids and ethylene of two wheat cultivars. Int J Agric Biol 7:363–368
  • Epstein E, Rains D (1987) Advances in salt tolerance. In: Gabelman HW, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Martinus Nijhoff Publ., Boston, pp 113–125
  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280
  • Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379
  • Flores HE, Filner P (1985) Polyamine catabolism in higher plants. Characterization of pyrroline dehydrogenase. Plant Growth Regul 3:277–291
  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–238
  • Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500
  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312
  • Goyal M, Asthir B (2010) Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regul 60:13–25
  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327
  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129
  • Kaldorf M, Schemelzer E, Bothe H (1998) Expression of maize and fungal nitrate reductase in arbuscular mycorrhiza. Mol Plant Microbe Interact 11:439–448
  • Köhler B, Raschke K (2000) The delivery of salts to the xylem. Three types of anion conductance in the plasmalemma of the xylem parenchyma of roots of barley. Plant Physiol 122:243–254
  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381
  • Li XL, Christie P (2001) Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zncontaminated soil. Chemosphere 42:201–207
  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336
  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, New York
  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102
  • Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008) Plant polyamine catabolism. Plant Signal Behav 3:1061–1066
  • Pang X, Zhang Z, Wen X, Ban Y, Moriguchi T (2007) Polyamines, all-purpose players in response to environment stresses in plants. Plant Stress 1:173–188
  • Parida SK, Das AB (2005) Salt tolerance and salinity effects on plants. Ecotoxicol Environ Saf 60:324–349
  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160
  • Pregl F (1945) Quantitative organic micro analysis, 4th edn. A. Churchill Ltd., London
  • Rahnama A, Poustini K, Tavakkol-Afshari R, Ahmadi A, Alizadeh H (2011) Growth properties and ion distribution in different tissues of bread wheat genotypes (Triticum aestivum L.) differing in salt tolerance. J Agron Crop Sci 197:21–30
  • Reggiani R, Giussani P, Bertani A (1990) Relationship between the accumulation of putrescine and the tolerance to oxygen-deficit stress in Gramineae seedlings. Plant Cell Physiol 31:489–494
  • Rinaldelli E, Mancuso S (1996) Response of young mycorrhizal and non mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. 1. Short term electro physiological and long term vegetative salt effects. Adv Hortic Sci 10:126–134
  • Ruiz-Lozano JM, Azcon R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143
  • Sannazzaro AI, Alvarez C, Menendez A, Pieckenstain F, Alberto E, Ruiz O (2004) Ornithine and arginine decarboxylase activities and effect of some polyamine biosynthesis inhibitors on Gigaspora rosea germinating spores. FEMS Microbiol Lett 230:115–121
  • Sannazzaro AI, Echeverria M, Alberto EO, Ruiz OA, Menendez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46
  • Schenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville, p 286
  • Selvaraj T, Chellappan P (2006) Arbuscular mycorrhizae: a diverse personality. J Cent Eur Agric 7:349–358
  • Sharma MP, Gaur A, Bhatia NP, Adholeya A (1996) Growth responses and dependence of Acacia nilotica var. cupriciformis on the indigenous arbuscular mycorrhizal consortium of a marginal wasteland soil. Mycorrhiza 6:441-446
  • Shekoofeh E, Sepideh H, Roya R (2012) Role of mycorrhizal fungi and salicylic acid in salinity tolerance of Ocimum basilicum resistance to salinity. Afr J Biotechnol 11:2223–2235
  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London
  • Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Iowa State University Press, Ames
  • Subramanian KS, Tenshia V, Jayalakshmi K, Ramachandran V (2009) Role of arbuscular mycorrhizal fungus (Glomus intraradices)—(fungus aided) in zinc nutrition of maize. J Agric Biotechnol Sustain Dev 1:29–38
  • Talaat NB, Shawky BT (2012) Influence of arbuscular mycorrhizae on root colonization, growth and productivity of two wheat cultivars under salt stress. Arch Agron Soil Sci 58:85–100
  • Wu QS, Peng YH, Zou YN, Liu CY (2010a) Exogenous polyamines affect mycorrhizal development of Glomus mosseae-colonized citrus (Citrus tangerine) seedlings. ScienceAsia 36:254–258
  • Wu QS, Zou YN, He XH (2010b) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2f885570-e2b4-4b50-b33d-ff7846f642a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.