EN
INTRODUCTION: Associative fear learning, in which stimulation of vibrissae is paired with tail shock results in increased functional cortical representation of the row of whiskers activated during the conditioning. Expansion of the functional cortical representation was revealed with 2-deoxyglucose autoradiography. The chemogenetic DREADD technique allows for precise manipulation of the brain circuits and is based on exclusive activation of designer receptors by designer drug – CNO (Clozapine N-oxide). CNO, which is believed to be pharmacologically inert in mice and rats but not in humans, recently was found to produce some behavioural effects in one of the rat’s strain. AIM(S): Taking into account the possible unspecific results in our chemogenetic experiments in mice, we aimed to determine if CNO administered alone can influence the learning-dependent plasticity. METHOD(S): A group of wild type, C57BL/6J mice underwent behavioural training consisting of 3 sessions of conditioning in three consecutive days. 30 minutes before each session mice were injected intraperitoneally with CNO (1 mg/kg). 24 hours after the third session 2-deoxyglucose procedure was performed. Autoradiograms of tangential brain sections containing the barrel field were analyzed and functional representation of the conditioned row of whiskers and contralateral row on the other side of the snout were mapped. RESULTS: Analysis showed the increased representation of the trained row in the fourth layer of barrel cortex in conditioned hemisphere in comparison to control one. Cortical activity was also observed in other structures like secondary somatosensory cortex and auditory cortex, which replicate the pattern of activation observed in previous experiments. CONCLUSIONS: The results suggest that CNO administered alone does not influence the learning‑‑dependent cortical plasticity and can be applied in chemogenetic experiments within this experimental model of learning in mice. FINANCIAL SUPPORT: Authors are supported by the Polish National Science Centre Grant given to Małgorzata Kossut (2015/17/B/NZ4/02016).