PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 58 | 3 |

Tytuł artykułu

Kinetic cooperativity of tyrosinase. A general mechanism

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Tyrosinase shows kinetic cooperativity in its action on o-diphenols, but not when it acts on monophenols, confirming that the slow step is the hydroxylation of monophenols to o-diphenols. This model can be generalised to a wide range of substrates; for example, type SA substrates, which give rise to a stable product as the o-quinone evolves by means of a first or pseudo first order reaction (α-methyl dopa, dopa methyl ester, dopamine, 3,4-dihydroxyphenylpropionic acid, 3,4-dihydroxyphenylacetic acid, α-methyl-tyrosine, tyrosine methyl ester, tyramine, 4-hydroxyphenylpropionic acid and 4-hydroxyphenylacetic acid), type SB substrates, which include those whose o-quinone evolves with no clear stoichiometry (catechol, 4-methylcatechol, phenol and p-cresol) and, lastly, type SC substrates, which give rise to stable o-quinones (4-tert-butylcatechol/4-tert-butylphenol).

Wydawca

-

Rocznik

Tom

58

Numer

3

Opis fizyczny

p.

Twórcy

  • GENZ: Grupo de Investigacion Enzimologia, Departamento de Bioquimica y Biologia Molecular-A, Facultad de Biología, Universidad de Murcia, Espinardo, Murcia, Spain
autor
autor

Bibliografia

  • Atkinson D, Walton GM (1965) Kinetics of regulatory enzymes. Escherichia coli phosphofructokinase. J Biol Chem 240: 757-763. 
  • Bai M, Huang J, Zheng X, Song Z, Tang M, Mao W, Yuan L, Wu J, Weng X, Zou X (2010) Highly selective suppression of melanoma cells by inducible DNA cross-linking agents: bis(catechol) derivatives. J Am Chem Soc 132: 15321-15327. 
  • Canovas FG, Garcia-Carmona F, Sanchez JV, Pastor JL, Teruel JA (1982) The role of pH in the melanin biosynthesis pathway. J Biol Chem 257: 8738-8744. 
  • Chazarra S, Garcia-Carmona F, Cabanes J (2001) Hysteresis and positive cooperativity of iceberg lettuce polyphenol oxidase. Biochem Biophys Res Commun 289: 769-775. 
  • Cleland WW (1967) The statistical analysis of the enzyme kinetic data. Adv Enzymol 29: 1-32. 
  • Escribano J, Tudela J, Garcia-Carmona F, Garcia-Canovas F (1989) A kinetic-study of the suicide inactivation of an enzyme measured through coupling reactions-application to the suicide inactivation of tyrosinase. Biochem J 262: 597-603. 
  • Espin JC, Varon R, Fenoll LG, Gilabert MA, Garcia-Ruiz PA, Tudela J, Garcia-Canovas F (2000) Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase. Eur J Biochem 267: 1270-1279 
  • Ferdinand W (1976) In The enzyme molecule. Ferdinand W, ed, pp 139-185. John Wiley and Sons, London.
  • Garcia-Carmona F, Garcia-Canovas F, Iborra JL, Lozano JA (1982) Kinetic study of the pathway of melanisation between L-dopa and dopachrome. Biochim Biophys Acta 717: 124-131.
  • Garcia-Molina F, Munoz JL, Varon R, Rodriguez-Lopez JN, Garcia-Canovas F, Tudela J (2007) A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase. J Agric Food Chem 55: 9739-9749. 
  • Haghbeen K, Tan EW (2003) Direct spectrophotometric assay of monooxygenase and oxidase activities of mushroom tyrosinase in the presence of synthetic and natural substrates. Anal Biochem 312: 23-32. 
  • Haghbeen K, Khalili MB, Nematpour FS, Gheibi N, Fazli M, Alijanianzadeh M, Jahromi SZ, Sariri R (2010) Surveying allosteric cooperativity and cooperative inhibition in mushroom tyrosinase. J Food Biochem 34: 308-328.
  • Hathaway JA, Atkinson DE (1963) The effect of adenylic acid on yeast nicotinamide adenine dinucleotide isocitrate dehydrogenase, a possible metabolic control mechanism. J Biol Chem 238: 2875-2881. 
  • Jandel Scientific. Sigma Plot 9.0 for WindowsTM; Jandel Scientific: Core Madera 2006.
  • Koshland Jr DE, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in protein containing subunits. Biochemistry 5: 365-385. 
  • Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during the catalysis. J Biol Chem 281: 8981-8990. 
  • Monod J, Wyman J, Changeaux JP (1965) On the nature of allosteric transitions: A plausible model. J Mol Biol 12: 88-118. 
  • Munoz JL, Garcia-Molina F, Varon R, Rodriguez-Lopez JN, Garcia-Canovas F, Tudela J (2006) Calculating molar absorptivities for o-quinones: application to the measurement of tyrosinase activity. Anal Biochem 351: 128-138. 
  • Munoz-Munoz JL, Garcia-Molina F, Varon R, Tudela J, Garcia-Canovas F, Rodriguez-Lopez JN (2009) Generation of hydrogen peroxide in the melanin biosynthesis pathway. Biochim Biophys Acta 1794: 1017-1029. 
  • Munoz-Munoz JL, Garcia-Molina F, Varon R, Tudela J, Garcia-Canovas F, Rodriguez-Lopez JN (2010) New features of the steady-state rate related with the initial concentration of substrate in the diphenolase and monophenolase activities of tyrosinase. J Math Chem 48: 347-362.
  • Park Y, Jung J, Kim D, Kim W, Hahn M, Yang J (2003) Kinetic inactivation study of mushroom tyrosinase: Intermediate detection by denaturants. J Protein Chem 22: 463-471. 
  • Peñalver MJ, Rodríguez-Lopez JN, García-Molina F, Garcia-Canovas F, Tudela J (2002) Method for the determination of molar absorptivities of thiol adducts formed from diphenolic substrates of polyphenol oxidase. Anal Biochem 309: 180-185. 
  • Piccoli R, Di Donato A, D'Alessio G (1988) Co-operativity in seminal ribonuclease function. Biochem J 253: 329-336. 
  • Rabin BR (1967) Co-operative effects in enzyme catalysis: A possible kinetic model based on substrate-induced conformation isomerisation. Biochem J 102: 22c-23c. 
  • Rodriguez-Lopez JN, Ros-Martinez JR, Varon R, Garcia-Canovas F (1992) Calibration of a Clark-type electrode by tyrosinase-catalyzed oxidation of 4-tert-butylcatechol. Anal Biochem 202: 356-360. 
  • Rodriguez-Lopez JN, Ros JR, Varon R, Garcia-Canovas F (1993) Oxygen Michaelis constants for tyrosinase. Biochem J 293: 859-866. 
  • Rodriguez-Lopez JN, Escribano J, Garcia-Canovas F (1994) A continuous spectrophotometric method for the determination of monophenolase activity of tyrosinase using 3-methyl-2-benzothiazolinone hydrazone. Anal Biochem 216: 205-212. 
  • Rodriguez-Lopez JN, Fenoll LG, Garcia-Ruiz PA, Varon R, Tudela J, Thorneley RNF, Garcia-Canovas F (2000) Stopped-flow and steady-state study of the diphenolase activity of mushroom tyrosinase. Biochemistry 39: 10497-10506. 
  • Ros JR, Rodriguez-Lopez JN, Garcia-Canovas F (1994) Tyrosinase: kinetic analysis of the transient phase and the steady-state. Biochim Biophys Acta 1204: 33-42. 
  • Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247: 1-11. 
  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and and oxygenases. Chem Rev 96: 2563-2606. 
  • Valero E, Garcia-Carmona F (1992) Hysteresis and cooperative behavior of a latent plant polyphenoloxidase. Plant Physiol 98: 774-776. 
  • Varon-Castellanos R, Garcia-Moreno M, Garcia-Sevilla F, Ruiz-Galea MM, Garcia-Canovas F (1995) Computerized derivation of the steady-state equations of enzyme reactions. A5, ed. Albacete, Spain
  • Wichers HJ, Gerritsen YAM, Chapelon CGJ (1996) Tyrosinase isoforms from the fruit bodies of Agaricus bisporus. Phytochemistry 43: 333-337.
  • Wichers HJ, Recourt K, Hendriks M, Ebbelaar CEM, Biancone G, Hoeberichts FA, Mooibroek H, Soler-Rivas C (2003) Cloning, expression and characterisation of two tyrosinase cDNAs from Agaricus bisporus. Appl Microbiol Biotechnol 61: 336-341. 
  • Wolfe RG, Neilands JB (1956) Some molecular kinetic properties of heart malic dehydrogenase. J Biol Chem 221: 61-69. 
  • Xue CB, Wan-Chen L, Lin J, Xiang-Ye X, Ting X, Lei Y (2007) Inhibition kinetics of cabbage butterfly (Pieris rapae L.) larvae phenoloxidase activity by 3-hydroxy-4-methoxybenzaldehide thiosemicarbazone. Appl Biochem Biotechnol 143: 101-114. 
  • Yamazaki S, Itoh S (2003) Kinetic evaluation of phenolase activity of tyrosinase using simplified catalytic reaction system. J Am Chem Soc 125: 13034-13035. 

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2f4eb218-ce04-4c56-809d-6b90e7fd80f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.