PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 66 | 3 |
Tytuł artykułu

The ability of a novel strain Scheffersomyces (syn. Candida) shehatae isolated from rotten wood to produce arabitol

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Arabitol is a polyalcohol which has about 70% of the sweetness of sucrose and an energy density of 0.2 kcal/g. Similarly to xylitol, it can be used in the food and pharmaceutical industries as a natural sweetener, a texturing agent, a dental caries reducer, and a humectant. Biotechnological production of arabitol from sugars represents an interesting alternative to chemical production. The yeast Scheffersomyces shehatae strain 20BM-3 isolated from rotten wood was screened for its ability to produce arabitol from L-arabinose, glucose, and xylose. This isolate, cultured at 28°C and 150 rpm, secreted 4.03 ± 0.00 to 7.97 ± 0.67 g/l of arabitol from 17–30 g/l of L-arabinose assimilated from a medium containing 20–80 g/l of this pentose with yields of 0.24 ± 0.00 to 0.36 ± 0.02 g/g. An optimization study demonstrated thatpH 4.0, 32°C, and a shaking frequency of 150 rpm were the optimum conditions for arabitol production by the investigated strain. Under these conditions, strain 20BM-3 produced 6.2 ± 0.17 g/l of arabitol from 17.5 g/l of arabinose after 4 days with a yield of 0.35 ± 0.01 g/g. This strain also produced arabitol from glucose, giving much lower yields, but did not produce it from xylose. The new strain can be successfully used for arabitol production from abundantly available sugars found in plant biomass.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
66
Numer
3
Opis fizyczny
p.335-343,fig.,ref.
Twórcy
  • Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Lublin, Poland
  • Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Lublin, Poland
autor
  • Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Lublin, Poland
autor
  • Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Lublin, Poland
autor
  • Laboratory of Molecular and Environmental Microbiology, Department of Plant and Soil System, Institute of Agrophysics, Polish Academy of Sciences, Poland
autor
  • Laboratory of Molecular and Environmental Microbiology, Department of Plant and Soil System, Institute of Agrophysics, Polish Academy of Sciences, Poland
Bibliografia
  • Antunes F.A.F., A.K. Chandel, T.S.S. Milessi, J.C. Santos, C.A. Rosa and S.S. da Silva. 2014. Bioethanol production from sugarcane bagasse by a novel Brazilian pentose fermenting yeast Scheffersomyces shehatae UFMG-HM 52.2: evaluation of fermentation medium. Int. J. Chem. Engin. ID 180681.
  • Bideaux C., J. Montheard, X. Cameleyre, C. Molina-Jouve and S. Alfenore. 2016. Metabolic flux analysis model for optimizing xylose conversion into ethanol by the natural C5-fermenting yeast Candida shehatae. Appl. Microbiol. Biotechnol. 100(3): 1489–1499.
  • Erickson B., J.E. Nelson and P. Winters. 2012. Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol. J. 7: 176–185.
  • Fonseca C., I. Spencer-Martins and B. Hahn-Hägerdal. 2007. L-arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Appl. Microbiol. Biotechnol. 75: 303–310.
  • Foshino R., S. Gallina, C. Andrighetto, L. Rossetti and A. Galli. 2004. Comparison of cultural methods for the identification and molecular investigation of yeasts from sourdoughs for Italian sweet baked products. FEMS Yeast Research. 4: 609–618.
  • Fromanger R., S.E. Guillouet, J.L. Uribelarrea, C. Molina-Jouve and X. Cameleyre. 2010. Effect of controlled oxygen limitation on Candida shehatae physiology for ethanol production from xylose and glucose. J. Ind. Microbiol. Biotechnol. 37: 437–445.
  • Girio F.M., A. Peito and M.T. Amaral-Collaço. 1989. Enzymatic and physiological study of D-xylose metabolism by Candida shehatae. Appl. Microbiol. Biotechnol. 32: 199–204.
  • Jeffries T.W. and C.P. Kurtzman. 1994. Strain selection, taxonomy, and genetics of xylose-fermenting yeasts. Enzyme Microb. Technol. 16: 922–932.
  • Koganti S., T.M. Kuo, C.P. Kurtzman, N. Smith and L.-K. Ju. 2011. Production of arabitol from glycerol: strain screening and study of factors affecting production yield. Appl. Microbiol. Biotechnol. 90: 257–267.
  • Kordowska-Wiater M., Z. Targoński and A. Jarosz. 2008. Biotransformation of L-arabinose to arabitol by yeasts from genera Pichia and Candida (in Polish). Biotechnologia. 1: 177–188.
  • Kordowska-Wiater M. 2015. Production of arabitol by yeasts:current status and future prospects. J. Appl. Microbiol. 119(2): 303–314.
  • Kumdam H., S.N. Murthy and S.N. Gummadi. 2013. Production of ethanol and arabitol by Debaryomyces nepalensis: influence of process parameters. AMB Expresss. 3: 23.
  • Kurtzman C.P., J.W. Fell and T. Boekhout. 2011. The Yeasts, a Taxonomic Study. vol 1. Elsevier Amsterdam.
  • Kurtzman C.P. and M. Suzuki. 2010. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51: 2–14.
  • McMillan J.D. and B.L. Boynton. 1994. Arabinose utilization by xylose-fermenting yeasts and fungi. Appl. Biochem. Biotechnol. 45/46: 569–584.
  • Mingguo J., B. Wang, L. Yang, S. Lin and H. Cheng. 2011. Microbiological purification of L-arabitol from xylitol mother liquor. J. Microbiol. Biotechnol. 21: 43–49.
  • Praphailong W., M. Van Gestel, G.H. Fleet and G.M. Heard. 1997. Evaluation of the Biolog system for the identification of food and beverage yeasts. Let. Appl. Microbiol. 24: 455–459.
  • Saha B.C. and R.J. Bothast. 1996. Production of L-arabitol from L-arabinose by Candida entomaea and Pichia guilliermondii. Appl. Microbiol. Biotechnol. 45: 299–306.
  • Sreenath H.K. and T.W. Jeffries. 2000. Production of ethanol from wood hydrolyzate by yeasts. Bioresource Technol. 72: 253–260.
  • Subtil T. and E. Boles. 2011. Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. Biotech. Biofuels. 4: 38.
  • Tanimura A., T. Nakamura, I. Watanabe, J. Ogawa and J. Shima. 2012. Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. SpringerPlus 1: 27.
  • Wang L., Z. Chi, X. Wang, L. Ju, Z. Chi and N. Guo. 2008. Isolation and characterization of Candida membranifaciens subsp. flavinogenie W14-3, a novel riboflavin-producing marine yeast. Microbiol. Res. 163: 255–266.
  • Watanabe I., Ando A. and T. Nakamura. 2010. Characterization of Candida sp. NY7122, a novel pentose-fermenting soil yeast. J. Ind. Microbiol. Biotechnol. 39: 307–315.
  • White T.J., Bruns T., Lee S. and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322. In: PCR protocols, a guide to methods and applications, Innis M.A. et al. (eds). Academic Press, New York .
  • Zhu H.-Y., H. Xu, X.-Y. Dai, Y. Zhang, H.-J. Ying and P.-K. Ouyang. 2010. Production of D-arabitol by a newly isolated Kodamaea ohmerii. Bioprocess Biosyst. Eng. 33: 565–571.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-2f4d58e3-f81f-4fc2-874e-3fa980f908b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.