PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 56 | 3 |

Tytuł artykułu

New evidence on the taphonomic context of the Ediacaran Pteridinium

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
New material collected from the Kliphoek Member of the Nama Group (Kuibis Subgroup, Dabis Formation) on Farm Aar, southern Namibia, offers insights concerning the morphology of the Ediacaran organism Pteridinium. Pteridinium fossils previously described as being preserved in situ have been discovered in association with scour−and−fill structures indicative of transport. Additionally, two Pteridinium fossils have been found within sedimentary dish structures in the Kliphoek Member. A form of organic surface with a discrete membrane−like habit has also been recovered from Farm Aar, and specimens exist with both Pteridinium and membrane−like structures superimposed. The association between Pteridinium fossils and membrane−like structures suggests several possibilities. Pteridinium individuals may have been transported before burial along with fragments of microbial mat; alternately they may have been enclosed by an external membranous structure during life.

Wydawca

-

Rocznik

Tom

56

Numer

3

Opis fizyczny

p.641-650,fig.,ref.

Twórcy

autor
  • School of Geosciences, Monash University, Victoria, Australia 3800
autor
autor

Bibliografia

  • Boggs, S. 2006. Principles of Sedimentology and Stratigraphy, 96–97. Pearson Prentice Hall, Upper Saddle River, New Jersey.
  • Crimes, T.P. and Fedonkin, M.A. 1996. Biotic changes in platform communities across the Precambrian–Phanerozoic boundary. Rivista Italiana di Paleontologia e Stratigrafia 102: 317–332.
  • Droser, M.L., Gehling, J.G., and Jensen, S. 2006. Assemblage palaeoecology of the Ediacara biota: the unabridged edition? Palaeogeography, Palaeoclimatology, Palaeoecology 232: 131–147.
  • Dzik, J. 1999. Organic membranous skeleton of the Precambrian metazoans from Namibia. Geology 27: 519–522.
  • Dzik, J. 2002. Possible ctenophoran affinities of the Precambrian “Sea−Pen” Rangea. Journal of Morphology 252: 315–334.
  • Dzik, J. 2003. Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integrative and Comparative Biology 43: 114–126.
  • Gastaldo, R.A. 2004. The relationship between bedform and log orientation in a Paleogene fluvial channel, Weisselster Basin, Germany: Implications for the use of coarse woody debris for paleocurrent analysis. PALAIOS 19: 587–597.
  • Gehling, J.G. 1988. A cnidarian of actinian−grade from the Ediacaran Pound Subgroup, South Australia. Alcheringa 12: 299–314.
  • Gehling, J.G. 1999. Microbial mats in terminal proterozoic siliciclastics: Ediacaran death masks. Palaios 14: 40–57.
  • Gehling, J.G. 2000. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Research 100: 65–95.
  • Gerdes, G., Claes, M., Dunajtschik−Piewak, K., Riege, H., Krumbein, W.E., and Reineck, H.−E. 1993. Contribution of microbial mats to sedimentary surface structures. Facies 29: 61–74.
  • Germs, G.J.B. 1973. A reinterpretation of Rangea schneiderhoehni and the discovery of a related new fossil from the Nama Group, South West Africa. Lethaia 6: 1–9.
  • Germs, G.J.B. 1974. The Nama Group in South−West Africa and its relationship to the pan−African geosyncline. The Journal of Geology 82: 301–317.
  • Gibson, G.G., Teeter, S.A., and Fedonkin, M.A. 1984. Ediacarian fossils from the Carolina slate belt, Stanly County, North Carolina. Geology 12: 387–390.
  • Gibson, G.G. and Teeter, S.A. 2001. Additional Ediacaran fossils from the late Precambrian Carolina terrane, south−central North Carolina. Southeastern Geology 40: 231–240.
  • Glaessner, M.F. 1979. An echiurid worm from the Late Precambrian. Lethaia 12: 121–124.
  • Grazhdankin, D.V. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30: 203–221.
  • Grazhdankin, D. and Seilacher, A. 2002. Underground Vendobionta from Namibia. Palaeontology 45: 57–78.
  • Grazhdankin, D.V. and Seilacher, A. 2005. A re−examination of the Namatype Vendian organism Rangea schneiderhoehni. Geological Magazine 142: 571–582.
  • Gresse, P.G. and Germs, G.J.B. 1993. The Nama foreland basin: sedimentation, major unconformity−bounded sequences and multisided active margin advance. Precambrian Research 63: 247–272.
  • Grotzinger, J.P., Bowring, S.A., Saylor, B.Z., and Kaufman, A.J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270: 598.
  • Gürich, G. 1930. Die bislang altesten Spuren von Organismen in Sudafrika. International Geological Congress (XV) 2: 670–680. Pretoria, South Africa.
  • Gürich, G. 1933. Die Kuibis−Fossilien der Nama−Formation von Sudwestafrika. Palaeontologische Zeitschrift 15: 137–154.
  • Hartnady, C., Joubert, P., and Stowe, C. 1985. Proterozoic crustal evolution in southwestern Africa. Episodes 8: 236–243.
  • Hirose, E., Kimura, S., Itoh, T., and Nishikawa, J. 1999. Tunic morphology and cellulosic components of pryosomas, doliolids, and salps (Thaliacea, Urochordata). Biological Bulletin 196: 113–120.
  • Horstmann, U.E., Ahrendt, H., Clauer, N., and Porada, H. 1990. The metamorphic history of the Damara Orogen based on K/Ar data of detrital white micas from the Nama Group, Namibia. Precambrian Research 48: 41–61.
  • Ivantsov, A.Y. and Grazhdankin, D.V. 1997. A new representative of the Petalonamae from the Upper Vendian of the Arkhangelsk Region. Paleontological Journal 31: 1–16.
  • Ivantsov, A.Y. and Fedonkin, M.A. 2002. Conulariid−like fossil from the Vendian of Russia: A metazoan clade across the Proterozoic/Palaeozoic boundary. Palaeontology 45: 1219–1229.
  • Jenkins, R.J.F. 1985. The enigmatic Ediacaran (Late Precambrian) genus Rangea and related forms. Paleobiology 11: 336–355.
  • Jenkins, R.J.F. 1986. Are enigmatic markings in Adelaidean of Flinders Ranges fossil ice−tracks? Nature 323: 472.
  • Jenkins, R.J.F. 1992. Functional and ecological aspects of Ediacaran assemblages. In: J.H. Lipps and P.W. Signor (eds.), Origin and Early Evolution of the Metazoa, 131–176. Plenum Press, New York.
  • Jenkins, R.J.F., Ford, C.H., and Gehling, J.G. 1983. The Ediacara member of the Rawnsley quartzite: the context of the Ediacara assemblage (late Precambrian, Flinders Ranges). Journal of the Geological Society of Australia 30: 101–119.
  • Lowe, D. 1975. Water escape structures in coarse−grained sediments. Sedimentology 22: 157–204.
  • Narbonne, G.M., Laflamme, M., Greentree, C., and Trusler, P. 2009. Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland. Journal of Paleontology 83: 503–523.
  • Narbonne, G.M., Saylor, B.Z., and Grotzinger, J.P. 1997. The youngest Ediacaran fossils from southern Africa. Journal of Paleontology 71: 953–969.
  • Noffke, N. 2000. Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (Lower Arenigian, Montagne Noire, France). Sedimentary Geology 136: 207–215.
  • Noffke, N. 2009. The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth Science Reviews 96: 173–180.
  • Noffke, N., Gerdes, G., Klenke, T., and Krumbein, W.E. 2001. Microbially induced sedimentary structures—a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research 71: 649–656.
  • Pflüg, H.D. 1970. Zur fauna der Nama−Schichten in Südwest−Afrika; I. Pteridinia, bau und systematische zugehörigkeit. Palaeontographica Abteilung A 134: 226–262.
  • Pflüger, F. and Gresse, P.G. 1996. Microbial sand chips—a non−actualistic sedimentary structure. Sedimentary Geology 102: 263–274.
  • Sarkar, S., Banerjee, S., and Eriksson, K.A. 2004. Microbial mat features in sandstones illustrated. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller, and O. Catuneanu (eds.), The Precambrian Earth: Tempos and Events, 673–675. Elsevier, Amsterdam.
  • Saylor, B.Z., Grotzinger, J.P., and Germs, G.J.B. 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), southwestern Namibia. Precambrian Research 73: 153–171.
  • Saylor, B.Z., Kaufman, A.J., Grotzinger, J.P., and Urban, F. 1998. A composite reference section for terminal Proterozoic strata of southern Namibia. Journal of Sedimentary Research 68: 1223–1235.
  • Saylor, B.Z., Poling, J.M., and Huff, W.D. 2005. Stratigraphic and chemical correlation of volcanic ash beds in the terminal Proterozoic Nama Group, Namibia. Geological Magazine 142: 519–538.
  • Scheiber, J. 1999. Microbial mats in terrigenous clastics: the challenge of identification in the rock record. Palaios 14: 3–12.
  • Scheiber, J. 2004. Microbial mats in the siliciclastic rock record: a summary of diagnostic features. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller, and O. Catuneanu (eds.), The Precambrian Earth: tempos and events, 663–673. Elsevier, Amsterdam.
  • Stanistreet, I.G., Kukla, P.A., and Henry, G. 1991. Sedimentary basinal responses to a late Precambrian Wilson cycle: the Damara orogen and Nama foreland, Namibia. Journal of African Earth Sciences 13: 141–156.
  • Weaver, P., Tacker, C., McMenamin, M.A.S., Ciampaglio, C.N., and Webb, R.A. 2008. Additional Ediacaran body fossils of south−central North Carolina. Southeastern Geology 45: 225–232.
  • Wynn, R.B., Massona, D.G., and Bet, B.J. 2002. Hydrodynamic significance of variable ripple morphology across deep−water barchan dunes in the Faroe−Shetland Channel. Marine Geology 192: 309–319.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2f2388a1-b167-4f1b-bac3-e92341c9cd62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.