PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

The effects of drought stress on yield, yield components, and yield stability at different growth stages in bread wheat cultivar (Triticum aestivum L.)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The current study examined the response of yield, yield components, and other physiological traits to drought in bread wheat. A field experiment was conducted in 2013-2015 at the the Agriculture and environmental research center of Ardabili located in Moghan, Iran. The experimental design was a split-plot experiment based on randomized complete block design with three replications under five drought stress (no irrigation) regimes: rainfed (T1), tillering stage (T2), booting stage (T3), after anthesis (T4), full irrigation (T5), and 10 bread wheat cultivars. Combined analysis of variance revealed significant genotypic differences for all measured trait aspects of TN, FTN, SN, and TDM. Significant differences were also observed between drought treatments for PH, DHE, DMA, GFP, NGS, TGW, HI, SW, TDM, GWP, and GW. The interaction between stress treatments and cultivars was also significant for DHE, DMA, GFP, NGS, TGW, and GY. The stability measuring of the GGE biplot polygon showed that the performance of cultivars G3, G7, and G8 are highly variable (less stable), whereas cultivars G5, G1, G2, G10, G9, and G4 are highly stable. Cultivars G9 and G10 are more desirable than other cultivars that has both high mean yield and high stability.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.739-746,fig.,ref.

Twórcy

autor
  • University of Mohaghegh Ardabili, Ardebil, Iran
autor
  • University of Mohaghegh Ardabili, Ardebil, Iran
  • University of Mohaghegh Ardabili, Ardebil, Iran
autor
  • Department of Water Engineering, Islamic Azad University, Lahijan Branch, Lahijan, Iran
autor
  • Dryland Agricultural Research Institute (DARI), AREEO, Maragheh, Iran
autor
  • West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran

Bibliografia

  • 1. Portmann F.T., Siebert S., Döll P. MIRCA2000 - Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling Glob. Biogeochem. Cycles 24 GB1011. 2010.
  • 2. Lobell D.B., Gourdji S.M. The influence of climate change on global crop productivity. Plant Physiol. 160, 1686, 2012.
  • 3. Shiferaw B., et al. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security Food Sec. 5, 291, 2013.
  • 4. Ben-Ari T., Makowski D. Decomposing global crop yield variability Environ. Environmental Research Letters, 9, 11, 2014.
  • 5. F.A.O. Statistical database. Available online: http// www.FAO.Org. 2016.
  • 6. Budak H., Kantar M., Kurtoglu K.Y. Drought tolerance in modern and wild wheat. Scientific World Journal. 2013.
  • 7. Farshadfar E., Rashidi M., Mahdi M.J., Zali H. GGE biplot analysis of genotype × environment interaction in chickpea genotypes. Eur. J. Exp. Biol. 3, 417, 2013.
  • 8. Emam Y., Shekoofa A., Salehi F., Jalali A.H. Water stress effects on two common bean cultivars with contrasting growth habits. Am. Eurasian J. Agric. Environ. 9, 495, 2010.
  • 9. Hawkesford M., Araus J., Park R., Calderini D., Miralles, D., Shen T., et al. Prospects of doubling global wheat yields. Food Energy Secure. 2, 34, 2013.
  • 10. Nouri A., Etminan A., Teixeirada-Silva J.A., Mohammadi R. Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Aust.J.CropSci. 5, 8, 2011.
  • 11. Manivannan P., Jaleel C.A., Somasundaram R., Panneerselvam R. Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. C R Biologies. 331, 418, 2008.
  • 12. Li YP., Ye W., Wang M., Yan X.D. Climate change and drought: a risk assessment of cropyield impacts. Climate Res. 39, 31, 2009.
  • 13. Demirevska K., Zasheva D., Dimitrov R., Simova-Stoilova L., Stamenova M., Feller U. Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiol Plant, 31, 1129, 2009.
  • 14. Blum A., Shpiler L., Golan A., Mayer J. Yield Stability and Canopy Temperature of Wheat Genotypes under Drought Stress. Field Crop Res, 22 (41), 289, 1989.
  • 15. Francia E., Tondelli A., Rizza F., Badeck F.W., Thomas W.T.B., van Eeuwijk Romagosa I., Stanca A.M., Pecchioni N. Determinants of barley grain yield in drought-prone Mediterranean environments. Italian Journal of Agronomy. 8 (1), 1, 2013.
  • 16. Hossain A., Teixeira da Silva J.A., Lozovskaya M.V., Zvolinsky V.P., Mukhortov V.I. High temperature combined with drought affect rainfed spring wheat and barley in southeastern Russia: Yield, relative performance and heat susceptibility index. Journal of Plant Breeding and Crop Science. 4 (11), 184, 2012.
  • 17. Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development. 29, 185, 2009.
  • 18. SAS Institute. The SAS system for Windows. Release 9.16. SAS Inst., Cary, NC. 2016.
  • 19. Bilal M., Rashid RM., Rehman SU., Iqbal F., Ahmed J., Abid MA., Ahmed Z., Hayat A. Evaluation of wheat genotypes for drought tolerance. Journal of green physiology, genetics and genomics 1, 11, 2015.
  • 20. Nezhadahmadi A., Prodhan Z., Faruq G. Drought Tolerance in Wheat. The Scientific World Journal. 13, 1, 2013.
  • 21. Gonzalez A., Bermejo V., Gimeno B.S. Effect of different physiological traits on grain yield in bar-ley grown under irrigated and terminal water deficit conditions. J. Agric. Sci. 148, 319, 2010.
  • 22. Calderini D.F., Reynolds M.P. Changes in grain weight as a consequence of de-graining treatments at pre- and post-anthesis in synthetic hexaploid lines of wheat (Triticum durumˆT. tauschii). Aust. J. Plant Physiol. 27, 183, 2000.
  • 23. Chen J.B., Liang Y., Hu X.Y., Wang X.X., Tan F.Q., Zhang H.Q., et al. Physiological characterization of stay green wheat cultivars during the grain filling stage under field growing conditions. ActaPhysiol.Plant. 32, 875, 2010.
  • 24. Rajala A., Hakala K., Mäkelä P., Peltonen-Sainio P. Drought effect on grain number and grain weight at spike and spikelet level in six-row spring barley. J. Agron. Crop Sci. 197, 103, 2011.
  • 25. Lopes M.S., Reynolds M.P. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J.Exp.Bot. 63, 3789, 2012.
  • 26. Kilic H., Yağbasanlar T. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38: 164, 2010.
  • 27. Dreccer M., Van Herwaarden A., Chapman S. Grain number and grain weight in wheat lines contrasting for stem water soluble carbohydrate concentration. Field Crop. Res. 112, 43, 2009.
  • 28. Dreccer M.F., Chapman S.C., Rattey A.R., Neal J., Song Y., Christopher J.T., et al. Developmental and growth controls of tillering and water-soluble carbohydrate accumulation in contrasting wheat (Triticum aestivum L.) genotypes: can we dissect them? J.Exp.Bot. 64, 143, 2013.
  • 29. Rebetzke G.J., van Herwaarden A.F., Jenkeins C., Weiss., Lewis D., Ruuska S., et al. Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Aust.J.Exp.Agric. 59, 891, 2008.
  • 30. Francia E., Tondelli A., Rizza F., Badeck F., Li Destri Nicosia O., Akar T., Grando S., Al-Yassin A., Benbelkacem A., Thomas W. Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crop. Res. 120, 169, 2011.
  • 31. Román A., Serragoa, I. A., Roxana S., Gustavo A. Slafer: Understanding grain yield responses to source - sink ratios during grain filling in wheat and barley under contrasting environments. Field Crops Research. 2013.
  • 32. Arisnabarreta S., Miralles D.J. Critical period for grain number establishment of near isogenic lines of two- and six-rowed barley. Field Crop. 107, 196, 2008.
  • 33. Lizana X., Calderini D. Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: Considerations for the climatic change scenarios of Chile. J. Agric. Sci. 151, 209, 2013.
  • 34. Yan W., Kang M.S. Ggebiplot Analysis: A Graphical Tool for Breeders. Geneticists, and Agronomists, CRD Press. Boca Raton. 2003.
  • 35. Ebadi segherloo A., Sabaghpour S.H., Dehghani H., kamrani M. Screening of superior chickpea genotypes for various environments of Iran using genotype plus genotype × environment (GGE) biplot analysis. Journal of Plant Breeding and Crop Science. 2 (9), 286, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2f112ed7-0be4-4d47-be32-64fdc3528047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.