PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 1 |

Tytuł artykułu

Effect of methyl jasmonate vapors on level of anthocyanins, biogenic amines and decarboxylases activity in seedlings of chosen vegetable species

Treść / Zawartość

Warianty tytułu

PL
Wpływ par jasmonianu metylu na poziom antocyjanów, amin biogennych i aktywności dekarboksylaz w siewkach wybranych gatunków warzyw

Języki publikacji

EN

Abstrakty

EN
Seedlings of four vegetable species (maize, tomato, radish and onion) were treated for 7 days with methyl jasmonate (MeJA) vapors. MeJA accelerated senescence process of plant tissues and accumulation of anthocyanins. The only exception were hypocotyls of radish, which was found to decrease of the anthocyanin content under the influence of MeJA. It has been shown that MeJA has a different impact on the content of free biogenic amines. In case of leaves and epicotyls of maize and tomato hypocotyls, MeJA had no effect on levels of putrescine (Put). The leaves of tomatoes have shown to increase the putrescine level as a result of the impact of MeJA vapors. However, in the tissues of radish and onion very large decline in putrescine and spermidine content under the influence of the phytohormone were observed. The presence of small amounts of spermine was found only in tissues of radish, and onion, which does not affect the use of MeJA. In tissues of maize the presence of a significant content of 2-phenylethylamine (PEA) were found. Use for 7 days of MeJA vapors resulted in 3-fold increase in the content of the PEA in maize leaves. Small levels of the amine has also been found in tomato hypocotyls, where use of MeJA caused reduction its content. Obtained results show a little relationship between the activity of the studied enzymes (ornithine decarboxylase (ODC), lysine decarboxylase (LDC) and tyrosine decarboxylase (TYDC)) and the contents of the amines in seedlings of four vegetable species. No free cadaverine and tyramine were found, and therefore probably both polyamines might be present as conju-gates. Putrescine also may be present in bound form. Moreover, since putrescine can be synthesized directly from ornithine or indirectly from arginine via agmatine, the activity of ODC alone did not give a full picture of the impact of MeJA on Put accumulation.
PL
Siewki czterech gatunków warzyw (kukurydzy, pomidora, rzodkiewki i cebuli) traktowano przez 7 dni parami jasmonianu metylu (MeJA). MeJA przyspieszyła proces starzenia tkanek roślinnych, powodując nagromadzenie antocyjanów. Jedynym wyjątkiem byá hipokotyle siewek rzodkiewki, w których stwierdzono zmniejszenie zawartości antocyjanów pod wpływem par MeJA. Wykazano, że MeJA ma zróżnicowany wpływ na zawartość amin biogennych. W przypadku liści i epikotyli kukurydzy oraz hipokotyli pomidora pary MeJA nie miały wpływ na zawartość putrescyny (Put). Z kolei liście pomidorów reagowały wzrostem poziomu putrescyny pod wpływem par MeJA. Natomiast w tkankach cebuli i rzodkiewki obserwowano bardzo duĪy spadek zawartości Put i spermidyny pod wpływem tego fitohormonu. Stwierdzone w tkankach rzodkiewki i cebuli niewielkie zawartości sperminy nie ulegały zmianom pod wpływem par MeJA. W tkankach kukurydzy wykazano obecność znacznej zawartości 2-fenyloetyloaminy (PEA). Stosowanie przez 7 dni par MeJA spowodowało 3-krotny wzrost zawartości PEA w liściach siewek tego gatunku. Niewielki poziom PEA stwierdzony w hipokotylach pomidorów ulegała obniżeniu pod wpływem MeJA. Uzyskane wyniki wskazują na mały związek pomiędzy aktywnością badanych enzymów (dekarboksylazy ornityny – ODC, dekarboksylazy lizyny – LDC i dekarboksylazy tyrozyny – TyDC) i zawartości amin w siewkach czterech badanych gatunków warzyw. W tkankach analizowanych gatunków warzyw nie stwierdzono mierzalnych poziomów kadaweryny i tyraminy, co może sugerować, że obie aminy mogą występować wyłącznie w formie związanej. ponieważ putrescyna może byü syntetyzowana bezpośrednio z ornityny lub pośrednio z argininy poprzez agmatynę, aktywność ODC nie daje pełnego obrazu wpływu MeJA na jej nagromadzanie.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

13

Numer

1

Opis fizyczny

p.3-15,ref.

Twórcy

autor
  • Faculty of Natural Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
autor
  • Research Institute of Horticulture, Skierniewice, Poland
autor
  • Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
autor
  • Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
autor
  • Siedlce University of Natural Sciences and Humanities, Siedlce, Poland

Bibliografia

  • Ananieva K., Ananiev E.D., Mishev K., Georgieva K., Malbeck J., Kaminek M., Van Staden J., 2007. Methyl jasmonate is a more effective senescence-promoting factor in Cucurbita pepo(zucchini) cotyledons when compared with darkness at the early stage of senescence. J. Plant Physiol. 164, 1179–1187.
  • Bailey B.A., Strem M.D., Bae H., Antunez de Mayolo G., Guiltinan M.J., 2005. Gene expression in leaves of Theobroma cacao in response to mechanical ounding, ethylene, and/or methyl jasmonate. Plant Sci. 168, 1247–1258.
  • Biondi S., Scaramagli S., Capitani F., Altamura M.M., Torrigiani P., 2001. Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines, and inhib-its shoot formation in tobacco thin layers. J. Exp. Bot. 52, 231– 242.
  • Biondi S., Scoccianti V., Scaramagli S., Ziosi V., Torrigiani P., 2003. Auxin and cytokinin mod-ify methyl jasmonate effects on polyamine metabolism and ethylene biosynthesis in tobacco leaf discs. Plant Sci. 165, 95–101.
  • Chalker-Scott L., 1999. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70, 1–9.
  • Chapple C.C.S., Walker M.A., Ellis B.E., 1986. Plant tyrosine decarboxylase can be strongly inhibited by L-Į-aminooxy-ȕ-phenylpropionate. Planta 167, 101–105.
  • Chen C.T., Chou C.M., Kao C.H., 1994. Methyl jasmonate induces the accumulation of putre-scine but not proline in detached rice leaves. J. Plant Physiol. 143,119–121.
  • Chen H., Jones A.D., Howe G.A., 2006. Constitutive activation of the jasmonate signaling path-way enhances the production of secondary metabolites in tomato. FEBS Lett. 580, 2540–2546.
  • Cheong J.J., Choi Y.D., 2003. Methyl jasmonate as a vital substance in plants. Trends Gen. 19, 409–413.
  • Close D.C., Beadle C.L., 2003. The ecophysiology of foliar anthocyanin. Bot. Rev. 69, 149–161.
  • Creelman R.A., Mullet J.E., 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA92, 4114–4119.
  • Facchini P.J., Huber-Allanach K.L., Tari L.W., 2000. Plant aromatic L-amino acid decarboxy-lases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochem-istry 54, 121–138.
  • Farmer E.E., Almeras E., Krishnamurthy V., 2003. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol.6, 372–378.
  • Flores H.E., Galston A.W., 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69, 701–706.
  • Gould K.S., 2004. Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J. Biomed. Biotech. 2004, 314–320.
  • Groppa M.D., Benavides M.P., 2008. Polyamines and abiotic stress: recent advances. Amino Acids 34, 35–45.
  • Hahlbrock K., Grisebach H., 1979. Enzymatic controls in the biosynthesis of lignin and flavon-oids. Ann. Rev. Plant Physiol. 30, 105–130.
  • Hahlbrock K., Scheel D., 1989. Physiology and molecular biology of phenylpropanoid metabo-lism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 347–369.
  • He Y., Fukushige H., Hildebrand D.F., Gan S., 2002. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128, 876–884.
  • Horbowicz M., Grzesiuk A., Dąbski H., Koczkodaj D., Saniewski M., 2008. Methyl jasmonate inhibits anthocyanins synthesis in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol. Crac. Series Bot. 50, 71–78.
  • Horbowicz M., Kosson R., Wiczkowski W., Koczkodaj D., Mitrus J., 2011a. The effect of methyl jasmonate on accumulation of 2-phenylethylamine and putrescine in seedlings of common buckwheat (Fagopyrum esculentum). Acta Physiol. Plant. 33, 897–903.
  • Horbowicz M., Wiczkowski W., Koczkodaj D., Saniewski M., 2011b. Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum escu-lentum Moench). Acta Biol. Hungar. 62, 265–278.
  • Horbowicz M., Kosson R., Saniewski M., Koczkodaj D., Mitrus J., 2013. Effects of simultane-ously use of methyl jasmonate with other plant hormones on level of anthocyanins and biogenic amines in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Agrobot. 66, 17–26.
  • Hung K.T., Kao C.H., 2004. Nitric oxide acts as an antioxidant and delays methyl jasmonate induced senescence of rice leaves. J. Plant Physiol. 161, 43–52.
  • Lee T-M., Lur H-S., Lin Y-H., Chu C., 1996. Physiological and biochemical changes related to methyl jasmonate-induced chilling tolerance of rice (Oryza sativa L.) seedlings. Plant, Cell Environ. 19, 65–74.
  • Lowry J.O.H., Rosebrough N.J., Farr A.L., Randal R.J., 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 256–277.
  • Mader J.C., 1999. Effects of jasmonic acid, silver nitrate and L-AOPP on the distribution of free and conjugated polyamines in roots and shoots of Solanum tuberosum in vitro. J. Plant Physiol. 154, 79–88.
  • Mancinelli A.L., 1984. Photoregulation of anthocyanin synthesis. VIII. Effects of light pretreat-ments. Plant Physiol. 75, 447–453.
  • Mancinelli A.L., 1990. Interaction between light quality and light quantity in the photoregulation of anthocyanin production. Plant Physiol. 92, 1191–1195.
  • Ngo T.T., Brillhart K.L., Davis R.H., Womg R.C., Bovaird J.H., Digangi J.J., Risov J.L., Marsh J.L., Phan A.P.H., Lenhoff H.M., 1987.Spectrophotometric assay for ornithine decarboxylase. Anal. Biochem. 160, 290–293.
  • Phan A.P.H., Ngo T.T., Lenhoff H.M., 1982. Spectrophotometric assay for lysine decarboxylase. Anal. Biochem. 120, 193–197.
  • Phan A.P.H., Ngo T.T., Lenhoff H.M., 1983.Tyrosine decarboxylase. Spectrophotometric assay and application determining pyridoxal-5’-phosphate. Appl. Biochem. Biotech. 8, 127–133.
  • Peremarti A., Bassie L., Yuan D., Palacho A., Christou P, Capell T., 2010. Transcriptional regulation of the rice arginine decarboxylase (Adc1) and S-adenosylmethionine decarboxylase (Samdc) genes by methyl jasmonate. Plant Physiol. Biochem. 48, 553–559.
  • Rabino I., Mancinelli A.L., 1986. Light, temperature and anthocyanins production. Plant Physiol. 81, 922–924.
  • Saniewski M., Horbowicz M., Puchalski J., 2006. Induction of anthocyanins accumulation by methyl jasmonate in shoots of Crassula multicava Lam. Acta Agrobot.59,43–50.
  • Saniewski M., Horbowicz M., Puchalski J., Ueda J., 2003. Methyl jasmonate stimulates the for-mation and the accumulation of anthocyanins in Kalanchoe blossfeldiana. Acta Physiol. Plant. 25, 143–149.
  • Saniewski M., Miszczak A., Kawa-Miszczak L., Wegrzynowicz-Lesiak E., Miyamoto K., Ueda J., 1998a. Effect of methyl jasmonate on anthocyanin accumulation, ethylene production, and CO2 evolution in cooled and uncooled tulip bulbs. J. Plant Growth Regul. 17, 33–37.
  • Saniewski M., Miyamoto K., Ueda J., 1998b. Methyl jasmonate induces gums and stimulates anthocyanin accumulation in peach shoot. J. Plant Growth Regul. 17, 121–124.
  • Shabana M., Gonaid M., Salama M.M., Abdel-Sattar E., 2006. Phenylalkylamine alkaloids from Stapelia hirsuta L. Nat. Prod. Res. 20, 710–714.
  • Shalaby A.R., 1996. Significance of biogenic amines to food safety and human health. Food Res. Inter. 29, 675–690.
  • Shan X., Zhang Y., Peng W., Xie D., 2009. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis.J. Exp. Bot. 60,3849–3860.
  • Smith T.A., 1977. Phenethylamine and related compounds in plants. Phytochemistry 16, 9–18.
  • Steyn W.J., Wand S.J.E., Holcroft D.M., Jacobs G., 2002. Anthocyanins in vegetative tissues: proposed unified function in photoprotection. New Phytol. 155,349–361.
  • Tamogami S., Rakwal R., Agrawal G.K., 2008. Interplant communication: airborne methyl jas-monate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Biochem. Biophys. Res. Commun. 376, 723–727.
  • Tieman D., Taylor M., Schauer N., Fernie A.R., Hanson A.D., Klee H.J., 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc. Natl. Acad. Sci. USA 103, 8287–8292.
  • Ueda J., Kato J., 1981. Promotive effect of methyl jasmonate on oat leaf senescence in the light. Z. Pflanzenphysiol., 103, 357–359.
  • Weidhase R.A.E., Kramell H.M., Lehmann J., Liebisch H.W., Lerbs W., Parthier B., 1987. Methyl jasmonate-induced changes in the polypeptide pattern of senescing barley leaf seg-ments. Plant Sci. 51, 177–186.
  • Walters D.R., 2003. Polyamines and plant diseases. Phytochemistry 64, 97–107.
  • Wasternack C., 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot.100, 681–697.
  • Xu B., Sheehan M.J., Timko M.P., 2004. Differential induction of ornithine decarboxylase (ODC) gene family members in transgenic tobacco (Nicotiana tabacum L. cv. Bright yellow 2) cell suspension by methyl-jasmonate treatment. Plant Growth Regul. 44, 101–116.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2efbe432-bb49-44b0-b644-5fbbdf6d0e2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.