PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 6 |

Tytuł artykułu

Investigating the toxicity of phenol-loaded and phenol-free TiO2 and ZnO nanoparticles using bioassay experiments

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study investigates the potential toxicity of TiO2 and ZnO nano-particles (nano-TiO2 and nano-ZnO) against Daphnia magna (D. magna) neonates before and after absorbing phenol. Although limited scientific investigation is conducted on possible hazards of nano-particles (NPs), no research has been carried out either on the toxicity of nano-ZnO and TiO2 in combination with other materials or on their ability to release the hazardous substances adsorbed on their surface in cells. Daphnia magna neonates exposed to different concentrations of phenol-free and phenol-loaded NPs and resulting mortality rates were recorded after 12 to 96 h. The results of mortality rates were applied to SPSS ver. 16.0 in order to calculate median lethal concentrations (LC50) of NPs. The results of experiments showed that phenol-free TiO2 was “practically nontoxic” according to EPA overview (48 h LC50: 2705 mg·L-1). But after exposure to phenol, its 48 h LC50 reached 414 mg·L-1, which means a 6-time increment in toxicity. 48 h LC50 of phenol-loaded and phenol-free nano-ZnO was 2.14 and 2.18 mg·L-1, respectively. This study showed, in contrast to nano-TiO2, that no significant difference is found between the toxicity of nano-ZnO before and after exposure to phenol. Researchers considered the amount of toxin absorbability of NPs to be one of the most important factors influencing the change in NP toxicity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

6

Opis fizyczny

p.2143-2148,fig.,ref.

Twórcy

autor
  • Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
autor
  • Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
autor
  • Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
autor
  • Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • University of British, Columbia, Vancouver, Canada

Bibliografia

  • 1. HEINLAAN M., IVASK A., BLINOVA I., DUBOUR- GUIER H. C., KAHRU A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crus­taceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71, (7), 1308, 2008.
  • 2. WONG S., LEUNG P., DJURISIC A., LEUNG K. Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytic. Bioanalytic. Chem. 396, (2), 609, 2009.
  • 3. NOWACK B., BUCHELI T.D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, (1), 5, 2007.
  • 4. LEE B. C., KIM S., SHON H., VIGNESWARAN S., KIM S., CHO J. Aquatic toxicity evaluation of TiO2 nanoparticle produced from sludge of TiCl4 flocculation of wastewater and seawater. J. Nano. Res. 11, (8), 2087, 2009.
  • 5. CHU I., DICK D., BRONAUGH R. Skin reservoir forma­tion and bioavailability of dermally administered chemicals in hairless guinea pigs. Food. Chem. Toxicol. 34, 267, 275, 1996.
  • 6. PAISIO C. E., AGOSTINI E., GONZLEZ P. S., BERTUZZI M. L. Lethal and teratogenic effects of phenol on Bufo are­narum embryos. J. Hazard. Mater. 167, (1-3), 64, 2009.
  • 7. MATTEO C., CANDIDO P., VERA R., FRANCESCA V. Current and Future Nanotech Applications in the Oil Industry. Am. J. Appl. Sci. 9, (6), 784, 2012.
  • 8. APHA, AWWA, and WEF. Standard methods for the exam­ination of water and wastewater (21th ed.). Washington DC, USA, pp. 400-412, 2005.
  • 9. ADAMS L. K., LYON D. Y., ALVAREZ P. J. J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40, (19), 3527, 2006.
  • 10. KAHRU A., DUBOURGUIER H. C., BLINOVA I., IVASK A., KASEMETS K. Biotests and Biosensors for Ecotoxicology of Metal Oxide Nanoparticles: A Minireview. Sensors. 8, (8), 5153, 2008.
  • 11. EPA: http://www.epa.gov/oppefed1/ecorisk_ders/toera_ analysis_eco.htm
  • 12. BEKKOUCHE S., BOUHELASSA M., HADJ SALAH N., MEGHLAOUI F. Z. Study of adsorption of phenol on tita­nium oxide (TiO2). Desalination. 166, 355, 2004.
  • 13. LENZ A., KARLSSON M., OJAMAE L. Quantum-chemi­cal investigations of phenol and larger aromatic molecules at the TiO2 anatase (101) surface. Journal of Physics: Conference Series, 117, 339, 2008.
  • 14. YAN G., CHEN J., HUA Z. Roles of H2O2 and OH radical in bactericidal action of immobilized TiO2 thin-film reactor: An ESR study. J. Photoch. Photobio. A. 207, (2-3), 153, 2009.
  • 15. CHU I., DICK D., BRONAUGH R. Skin reservoir forma­tion and bioavailability of dermally administered chemicals in hairless guinea pigs. Food. Chem. Toxicol. 34, 267, 275, 1996.
  • 16. GOYARTS T., DANICKE S. Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally cont­aminated wheat for the pig. Toxicol. Lett. 163, (3), 171, 2006.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2ea3b78a-ac71-421d-89e8-c6a316b87757
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.