Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 62 | 2 |
Tytuł artykułu

Stability of phenolic compounds isolated from cocoa, green tea and strawberries in Hank's Balanced Salt Solution under cell culture conditions

Treść / Zawartość
Warianty tytułu
Języki publikacji
The study analysed the stability of polyphenols present in extracts isolated from cocoa, green tea and strawberries in Hank’s Balanced Salt Solution buffers. The extracts were incubated under conditions commonly used for intestinal absorption experiments with human epithelial cells. The polyphenols were analysed with HPLC-DAD-FLD-MS method. The concentrations of most of the polyphenols monitored changed during 2 h of incubation. The fl avan-3-ols of cocoa exhibited similar stability and all were more stable at pH 6.5 than 7.4. The concentration of procyanidin B2 at pH 7.4 decreased to the highest extent. Green tea predominant catechins: epigallocatechin gallate and epigallocatechin, were very vulnerable in HBSS both at pH 6.5 and 7.4; their specific molecular structure may be responsible for this phenomenon. The anthocyanins of a strawberry extract were more stable at pH 6.5. The considerable increase in ellagic acid concentration at pH 7.4 might be explained by possible degradation of other compounds of the extract. It is highly recommended to perform stability tests before transport experiments in a cell culture model in order to avoid misinterpretation of results.
Słowa kluczowe
Opis fizyczny
  • Institute of Life Technologies, University of Applied Sciences Valais, Route du Rawyl 47, CH-1950 Sion, Switzerland
  • 1. Aaby K., Ekeberg D., Skrede G., Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J. Agric. Food Chem., 2007, 55, 4395–4406.
  • 2. Andlauer W., Stehle P., Fürst P., Chemoprevention - a novel approach in dietetics. Curr. Opin. Clin. Nutr. Met. Care, 1998, 1, 539–547.
  • 3. Artursson P., Palm K., Luthman K., Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev., 1996, 22, 67–84.
  • 4. Barrington R., Williamson G., Bennett R.N., Davis B.D., Brodbelt J.S., Kroon P.A., Absorption, conjugation and effl ux of the fl avonoids, kaempferol and galangin, using the intestinal CaCo-2/TC7 cell model. J. Funct. Foods, 2009, 1, 74–87.
  • 5. Chen Z.Y., Zhu Q.Y., Tsang D., Huang Y., Degradation of green tea catechins in tea drinks. J. Agric. Food Chem., 2001, 49, 477–482.
  • 6. Dai J., Gupte A., Gates L., Mumper R.J., A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: Extraction methods, stability, anticancer properties and mechanisms. Food Chem. Toxicol., 2009, 47, 837–847.
  • 7. Deprez S., Mila I., Huneau J.F., Tome D., Scalbert A., Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid. Redox Signal., 2001, 3, 957–967.
  • 8. Dupas C., Baglieri A.M., Ordonaud C., Tome D., Maillard M.N., Chlorogenic acid is poorly absorbed, independently of the food matrix: A Caco-2 cells and rat chronic absorption study. Mol. Nutr. Food Res., 2006, 50, 1053–1060.
  • 9. González-Barrio R., Borges G., Mullen W., Crozier A., Bioavailability of anthocyanins and ellagitannins following consumption of raspberries by healthy humans and subjects with an ileostomy. J. Agric. Food Chem., 2010, 58, 3933–3939.
  • 10. Halliwell B., Free radicals and antioxidants - quo vadis? Trends Pharmacol. Sci., 2011, 32, 125–130.
  • 11. Hong J., Lu H., Meng X., Ryu J.H., Hara Y., Yang C.S., Stability, cellular uptake, biotransformation, and effl ux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Can. Res., 2002, 62, 7241–7246.
  • 12. Hubatsch I., Ragnarsson E.G.E., Artursson P., Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Prot., 2007, 2, 2111–2119.
  • 13. Jaganath I.B., Crozier A., Dietary fl avonoids and phenolic compounds. 2010, in: Plant Phenolics and Human Health: Biochemistry, Nutrition and Pharmacology (ed. C.G. Fraga). John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 1–49.
  • 14. Kajdzanoska M., Gjamovski V., Stefova M., HPLC-DAD-ESI- -MSn Identifi cation of phenolic compounds in cultivated strawberries from Macedonia. Maced. J. Chem. Chem. Eng., 2010, 29, 181–194.
  • 15. Keogh J.B., McInerney J., Clifton P.M., The effect of milk protein on the bioavailability of cocoa polyphenols. J. Food Sci., 2007, 72, S230-S233.
  • 16. Kosińska A., Andlauer W., Cocoa polyphenols are absorbed in Caco-2 cell model of intestinal epithelium. Food Chem., 2012, submitted.
  • 17. Langerholc T., Maragkoudakis P.A., Wollgast J., Gradisnik L., Cencic A., Novel and established intestinal cell line models - An indispensable tool in food science and nutrition. Trends Food Sci. Tech., 2011, 22, S11-S20.
  • 18. Larrosa M., Garcia-Conesa M.T., Espin J.C., Tomas-Barberan F.A., Ellagitannins, ellagic acid and vascular health. Mol. Aspects Med., 2010, 31, 513–539.
  • 19. Long L.H., Hoi A., Halliwell B., Instability of, and generation of hydrogen peroxide by, phenolic compounds in cell culture media. Arch. Biochem. Biophys., 2010, 501, SI, 162–169.
  • 20. Lu W.C., Huang W.T., Kumaran A., Ho C.T., Hwang L.S., Transformation of proanthocyanidin A2 to its isomers under different physiological pH conditions and common cell culture medium. J. Agric. Food Chem., 2011, 59, 6214–6220.
  • 21. Neilson A.P., Ferruzzi M.G., Infl uence of formulation and processing on absorption and metabolism of fl avan-3-ols from tea and cocoa. Annu. Rev. Food Sci. Technol., 2011, 2, 125–151.
  • 22. Sang S., Lee M.J., Hou Z., Ho C.T., Yang C.S., Stability of tea polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J. Agric. Food Chem., 2005, 53, 9478–9484.
  • 23. Sang S., Yang I., Buckley B., Ho C.T., Yang C.S., Autoxidative quinone formation in vitro and metabolite formation in vivo from tea polyphenol (-)-epigallocatechin-3-gallate: Studied by real-time mass spectrometry combined with tandem mass ion mapping. Free Radic. Biol. Med., 2007, 43, 362–371.
  • 24. Tanaka Y., Taki Y., Sakane T., Nadai T., Sezaki H., Yamashita S., Characterization of drug transport through tight-junctional pathway in Caco-2 monolayer: Comparison with isolated rat jejunum and colon. Pharma. Res., 1995, 12, 523–528.
  • 25. Tian X.J., Yang X.W., Yang X., Wang K., Studies of intestinal permeability of 36 fl avonoids using Caco-2 cell monolayer model. Int. J. Pharm., 2009, 367, 58–64.
  • 26. van Breemen R.B., Li Y., Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol., 2005, 1, 175–185.
  • 27. Zhu Q.Y., Holt R.R., Lazarus S.A., Ensunsa J.L., Hammerstone J.F., Schmitz H.H., Keen C.L., Stability of the fl avan- 3-ols epicatechin and catechin and related dimeric procyanidins derived from cocoa. J. Agric. Food Chem., 2002, 50, 1700–1705.
  • 28. Zhu Q.Y., Zhang A., Tsang D., Huang Y., Chen Z.Y., Stability of green tea catechins. J. Agric. Food Chem., 1997, 45, 4624–4628.
  • 29. Zuo Z., Zhang L., Zhou L., Chang Q., Chow M., Intestinal absorption of hawthorn fl avonoids - in vitro, in situ and in vivo correlations. Life Sci., 2006, 79, 2455–2462.
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.