Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 60 | 3 |
Tytuł artykułu

Investigation into the optimization of parameters of glycerol biotransformation to dihydroxyacetone with the use of immobilized cells of Gluconacetobacter xylinus

Treść / Zawartość
Warianty tytułu
Języki publikacji
The Gluconacetobacter xylinus species, belonging to a group of acetic bacteria, is capable of partial oxidation of glycerol. Dihydroxyacetone (DHA), being a product of that transformation, has been used in the food industry (as a sweetener), cosmetic industry (production of self-tanning creams) and in dermatology (treatment of leukoderma). The objective of the study reported herein was to determine values of the initial concentration of glycerol in the culture medium, active acidity of the medium and time of culture assuring the highest quantity of DHA produced, all three being optimal for the course of glycerol biotransformation to DHA. The biotransformation process was conducted with the use of G. xylinus cells immobilized in calcium alginate. The study demonstrated that in the culture medium with pH 5.0 and initial concentration of glycerol reaching 100 g/L, the concentration of DHA after 36 h of biotransformation accounted for 10.9 g/L. The highest content of the product in the culture media with active acidity of 7.0 or 8.0 and containing 100 g of glycerol/L at the beginning of the process, reached 10.5 g/L (after 36 h) and 10.7 g/L (after 34 h of the process), respectively. Elongating the biotransformation process to over 36 h resulted in a decrease in DHA concentration, which could have been due to its phosphorylation. Results obtained in this research demonstrated that the efficiency of glycerol biotransformation to DHA was determined, first of all, by the initial concentration of substrate and, to a slightly lesser extent, by acidity of the culture medium and process duration.
Słowa kluczowe
Opis fizyczny
  • Department of Biotechnology, Microbiology and Food Evaluation, Warsaw Agricultural University, Nowoursynowska 159C build. 32, 02-787 Warsaw, Poland
  • 1. Adachi O., Matsushita K., Glycerol dehydrogenase, process for its production and its use, USA, patent NO 5614374, 1997.
  • 2. Bauer R., Katsikis N., Vargas S., Hekmat D., Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process. Biopr. Biosyst. Eng., 2005, 28, 37–43.
  • 3. Beasley D.M., Glass W.J., Cyanide poisoning: pathophysiology and treatment recommendations. Occup. Med., 1998, 48, 427–431.
  • 4. Burbianka M., Pliszka A., Burzyńska H., Mikrobiologia Żywności. 1987, Wyd. VI, PZWL, Warszawa, pp. 33–35, 489–490 (in Polish).
  • 5. Claret C., Bories A., Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl. Microbiol. Biotechnol., 1994, 41, 359–365.
  • 6. Cortez M., Torgan C., Brozinick J., Miller R., Effects of pyruvate and dihydroxyacetone consumption on growth and metabolic state of obese Zucker rats. Am. J. Clin. Nutr., 1991, 53, 847–853.
  • 7. De Ley J., Gillis M., Swings J., Bergey’s Manual of Systematic Bacteriology. 1984, vol. 1 (eds. N.R. Krieg, J.G. Holt). Williams and Wilkins, Baltimore, pp. 267–278.
  • 8. De Muynck C., Pereira C.S.S., Naessens M., Parmenties S., Soetaert W., Vandamme E.J., The genus Gluconobacter oxydans. Comprehensive overview of biochemistry and biotechnological applications. Crit. Rev. Biotech., 2007, 27, 147–171.
  • 9. Deppenmeier U., Hoffmeister M., Prust C., Biochemistry and biotechnological applications of Gluconobacter strains. Appl. Microbiol. Biotechnol., 2002, 60, 233–242.
  • 10. Draelos M.D., Zoe D., Self-Tanning Lotions: Are they a healthy way to achieve a tan? Am. J. Clin. Dermatol., 2002, 3, 317–318.
  • 11. Erni B., Siebold C., Christen S., Srinivas A., Oberholzer A., Baumann U., Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases. Cell. Mol. Life Sci., 2006, 63, 890–900.
  • 12. Ferroni E.L., Di Tella V., Jeske R., Structures of dihydroxyacetone. J. Org. Chem., 1999, 64, 4943–4945.
  • 13. Fesq H., Brockow K., Storm M.M., Ring J., Abeck D., Dihydroxyacetone in a new formulation – a powerful therapeutic option in vitiligo. Dermatology, 2001, 203, 241–243.
  • 14. Hauge E., Harder W., Vogel H., Knuth B., Ebel K., Groening C., Preparation of dihydroxyacetone. USA, patent No 5410089, 1995.
  • 15. Hauge J.G., King T.E., Cheldelin V.H., Alternate conversions of glycerol to dihydroxyacetone in Acetobacter suboxydans. J. Biol. Chem., 1954, 214, 1–9.
  • 16. Hekmat D., Bauer R., Fricke J., Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng., 2003, 26, 109–116.
  • 17. Holst O., Lundback H., Maltiasson B., Hydrogen peroxide as an oxygen source for immobilized Gluconobacter oxydans converting glycerol to dihydroxyacetone. Appl. Microbiol. Biotechnol., 1985, 22, 382–388.
  • 18. Kluyver A. J., Process for the preparation of organic compounds by means of bacterial oxidation. USA, patent No 1833716, 1931.
  • 19. Levy S.B., Tanning preparations. Dermal. Clin., 2000, 18, 591–596.
  • 20. Matsushita K., Fujii Y., Ano Y., Toyama H., Shinjoh M., Tomiyama N., Miyazaki T., Sugisawa T., Hoshino T., Adachi O., 5-keto- D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase major polyol dehydrogenase in Gluconobacter species. Appl. Env. Microbiol., 2003, 69, 1959–1966.
  • 21. Mądry W., Doświadczalnictwo: doświadczenia czynnikowe. 2003, Wyd. III., Fundacja Rozwój SGGW, Warszawa, pp. 98–138 (in Polish).
  • 22. Mishra R., Jain S.R., Kumar A., Microbial production of dihydroxyacetone. Biotech. Adv., 2008, 26, 293–303.
  • 23. Nabe K., Izuo N., Yamada S., Chibata I., Conversion of glycerol to dihydroxyacetone by immobilized whole cells of Acetobacter xylinum. Appl. Env. Microbiol., 1979, 38, 1056–1060.
  • 24. Niknahad H., Ghelichkhani E., Antagonism of cyanide poisoning by dihydroxyacetone. Toxicol. Lett., 2002, 132, 95–100.
  • 25. Ohrem H.L., Voss H., Inhibitory effects of dihydroxyacetone on Gluconobacter cultures. Biotechnol. Lett., 1995, 17, 981–984.
  • 26. Omar A., Bittar S., Hwalla N., Effect of diet supplementation with glutamine, dihydroxyacetone, and leucine on food intake, weight gain, and postprandial glycogen metabolism of rats. Nutr., 2005, 21, 224–229.
  • 27. Petersen A.B., Na R., Wulf H.C., Sunless skin tanning with dihydroxyacetone delays broad-spectrum ultraviolet photocarcinogenesis in hairless mice. Mutat. Res., 2003, 542, 129–138.
  • 28. Rabinowitch I.M., Observations on the use of dihydroxyacetone in the treatment of diabetes mellitus (preliminary report). Can. Med. Assos. J., 1925, 15, 281–374.
  • 29. Rainbow B.Sc., The biochemistry of Acetobacter. Prog. Industr. Microbiol., 1961, 3, 43–56.
  • 30. Raška J., Skopal F., Komers K., Machek J., Kinetics of glycerol biotransformation to dihydroxyacetone by immobilized Gluconobacter oxydans and effect of reaction conditions. Collect. Czech. Chem. Commun., 2007, 72, 1269–1283.
  • 31. Rogers C.J., Spray-on tanning. Aesth. Surg. J., 2005, 25, 413–415.
  • 32. Schmid D., Belser E., Zulli F., Self-tanning based on stimulation of melanin biosynthesis. Cosm. Toilet., 2007, 6, 55–60.
  • 33. Tkač J., Navratil M., Struzik E., Gemeiner P., Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilised Gluconobacter oxydans cells with an enzyme biosensor. Enzyme. Microbiol. Technol., 2001, 28, 383–388.
  • 34. Toczko M., Grzelińska A., Materiały do ćwiczeń z biochemii. 2001, Wyd. V., SGGW, Warszawa, pp. 38–41 (in Polish).
  • 35. Wei S., Song Q., Wei D., Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone. Prep. Biochem., Biotechnol., 2007, 37, 67–76.
  • 36. Wethmar M., Deckwer W.D., Semisynthetic culture medium for growth and dihydroxyacetone production by Gluconobacter oxydans. Biotechnol. Tech., 1999, 13, 283–287.
  • 37. Zieliński W., Tablice statystyczne. 1996, Wyd. I, SGGW, Warszawa, pp. 11–14, 39–41, 48–49 (in Polish).
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.