PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 5 |
Tytuł artykułu

Phosphorus and nitrogen removal using novel porous bricks incorporated with wastes and minerals

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, wastes and minerals were incorporated into the production of bricks as a kind of waterpurifying substrate. The brick contained 72% clay, 10% bagasse, 10% steel slag, 5% zeolite, and 3% calcite by weight. The brick exhibited highly and hierarchically porous structure. It can remove phosphate and ammonium simultaneously from aqueous solutions with the maximum adsorption amount of 3.8 mg/g for phosphate and 0.7 mg/g for ammonium. Kinetic analysis showed that the brick had a faster removal rate for phosphate than ammonium. The maximum desorbability of phosphate and ammonium were found to be 5.9% and 13.9%, respectively. Considering wastes recycling, easy fabrication, and favorable properties, this type of brick has the potential to be applied to in-situ remediation of aquatic environment.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
22
Numer
5
Opis fizyczny
p.1349-1356,fig.,ref.
Twórcy
autor
  • Shanghai Key Laboratory of Urbanization and Ecological Restoration, School of Resources and Environmental Sciences, East China Normal University, Shanghai, China
autor
  • Shanghai Key Laboratory of Urbanization and Ecological Restoration, School of Resources and Environmental Sciences, East China Normal University, Shanghai, China
autor
  • Shanghai Key Laboratory of Urbanization and Ecological Restoration, School of Resources and Environmental Sciences, East China Normal University, Shanghai, China
autor
  • Shanghai Key Laboratory of Urbanization and Ecological Restoration, School of Resources and Environmental Sciences, East China Normal University, Shanghai, China
autor
  • Shanghai Key Laboratory of Urbanization and Ecological Restoration, School of Resources and Environmental Sciences, East China Normal University, Shanghai, China
autor
  • Shanghai Key Laboratory of Urbanization and Ecological Restoration, School of Resources and Environmental Sciences, East China Normal University, Shanghai, China
Bibliografia
  • 1. EMARANON E., ULMANU M., FERNANDEZ Y., ANGER I., CASTRILLON L. Removal of ammonium from aqueous solutions with volcanic tuff. J. Hazard. Mater. B137, 1402, 2006.
  • 2. MONTALVO S.J., GUERRERO L.E., MILAN Z., BORJA R. Nitrogen and phosphorus removal using a novel integrated system of natural zeolite and lime. J. Environ. Sci. Heal. Pt. A. 46, 1385, 2011.
  • 3. WEN D. H., HO Y.S., TANG X.Y. Comparative sorption kinetic studies of ammonium onto zeolite. J. Hazard. Mater. B133, 252, 2006.
  • 4. HUANG H.M., XIAO X.M., YAN B., YANG L.P. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. J. Hazard. Mater. 175, 247, 2010.
  • 5. WANG S.B., PENG Y.L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156, 11, 2010.
  • 6. DRIZO A., COMEAU Y., FORGET C., CHAPUIS R.P. Phosphorus saturation potential: A parameter for estimating the longevity of constructed wetlands systems. Environ. Sci. Technol. 36, 4642, 2002.
  • 7. LU S.G., BAI S.Q., ZHU L., SHAN H.D. Removal mechanism of phosphate from aqueous solution by fly ash. J. Hazard. Mater. 161, 95, 2009.
  • 8. BROGOWSKI Z., RENMAN G. Characterisation of opoka as a basis for its use in wastewater treatment. Pol. J. Environ. Stud. 13, (1), 15, 2004.
  • 9. BROOKS A.S., ROZENWALD M.N., GEOHRING L.D., LION L. W., STEENHUIS T. S. Phosphorus removal by wollastonite: A constructed wetland substrate. Ecol. Eng. 15, 121, 2000.
  • 10. XIONG J.B., MAHMOOD Q. Adsorptive removal of phosphate from aqueous media by peat. Desalination. 259, 59, 2010.
  • 11. WU D.Y., ZHANG B.H., LI C.J., ZHANG Z.J., KONG H.N. Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment. J. Colloid Interf. Sci. 304, 300, 2006.
  • 12. CULTRONE G., SEBASTIAN E., CAZALLA O., NECHAR M., ROMERO R., BAGUR M.G. Ultrasound and mechanical tests combined with ANOVA to evaluate brick quality. Ceram. Int. 27, 401, 2001.
  • 13. SHIH P.H., WU Z.Z., CHIANG H.L. Characteristics of bricks made from waste steel slag. Waste Manage. 24, 1043, 2004.
  • 14. LIN K.L. Feasibility study of using brick made from municipal solid waste incinerator fly ash slag. J. Hazard. Mater. B137, 1810, 2006.
  • 15. HEREK L.C.S., HORI C.E., REIS M.H.M., MORA N.D., TAVARES C.R.G., BERGAMASCO R. Characterization of ceramic bricks incorporated with textile laundry sludge. Ceram. Int. 38, 951, 2012.
  • 16. DEMIR I., BASPMAR M.S., ORHAN M. Utilization of kraft pulp production residues in clay brick production. Build. Environ. 40, 1533, 2005.
  • 17. DEMIR I. Effect of organic residues addition on the technological properties of clay bricks. Waste Manage. 28, 622, 2008.
  • 18. SUTCU M., AKKURT S. The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceram. Int. 35, 2625, 2009.
  • 19. ASTM (American Society for Testing and Materials). Standard test methods for sampling and testing brick and structural clay tile (ASTM C 67-07), West Conshohocken, pp. 2-3, 2007.
  • 20. SEPAC (The State Environmental Protection Administration of China). Monitoring and Analytical Methods of Water and Wastewater. China Environmental Science Press: Beijing, pp. 243-281, 2002 [In Chinese].
  • 21. SHAO G.S., LIU L., MA T.Y., YUAN Z.Y. Exotemplating synthesis of nitrogen-doped carbon materials with hierarchically porous structure and their application for lysozyme adsorption. Chem. Eng. J. 174, 452, 2011.
  • 22. GAQSIQ (General administration of quality supervision, inspection and quarantine of P.R.China). National Standards of the People’s Republic of China for Common Fired Bricks (GB 5101-2003), Beijing, pp. 2, 2003 [In Chinese].
  • 23. YAN L. Research on the treatment of lakeside initial storm water runoff by the enhanced ecological engineering technology. Shanghai Jiao Tong University, pp. 74-75, 2006 [In Chinese].
  • 24. USEPA (U.S.Environmental Protection Agency). Emission factor documentation for AP-42 section 1.8: Bagasse combustion in sugar mills, North Carolina, pp. 9, 1993.
  • 25. MEZENNER N.Y., BENSMAILI A. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem. Eng. J. 147, 87, 2009.
  • 26. MALASH G.F., EI-KHAIARY M.I. Methylene blue adsorption by the waste of Abu-Tartour phosphate rock. J. Colloid Interf. Sci. 348, 537, 2010.
  • 27. DOTTO G.L., PINTO L.A.A. Adsorption of food dyes onto chitosan: Optimization process and kinetic. Carbohyd. Polym. 84, 231, 2011.
  • 28. CHANG C.F., CHANG C.Y., CHEN K.H., TSAI W.T., SHIE J.L., CHEN Y.H. Adsorption of naphthalene on zeolite from aqueous solution. J. Colloid Interf. Sci. 277, 29, 2004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-2d8bb017-6fbb-40f9-8362-6257b08061e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.