Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 66 | 2 |
Tytuł artykułu

Biochar-rhizosphere interactions - a review

Treść / Zawartość
Warianty tytułu
Języki publikacji
Biochar is a solid material of biological origin obtained from biomass carbonization, designed as a mean to reduce greenhouse gases emis-sion and carbon sequestration in soils for a long time. Biochar has a wide spectrum of practical utilization and is applied as a promising soil improver or fertilizer in agriculture, or as a medium for soil or water remediation. Preparations of biochar increase plant growth and yielding when applied into soil and also improve plant growth conditions, mainly bio, physical and chemical properties of soil. Its physical and chemical properties have an influence on bacteria, fungi and invertebrates, both in field and laboratory conditions. Such effects on rhizosphere organisms are positive or negative depending on biochar raw material origin, charring conditions, frequency of applications, applications method and doses, but long term effects are generally positive and are associated mainly with increased soil biota activity. However, a risk assessment of biochar applications is necessary to protect food production and the soil environment. This should be accomplished by biochar production and characterization, land use implementation, economic analysis, including life cycle assessment, and environmental impact assessment.
Słowa kluczowe
Opis fizyczny
  • Research Institute of Horticulture, Skierniewice, Poland
  • Research Institute of Horticulture, Skierniewice, Poland
  • Research Institute of Horticulture, Skierniewice, Poland
  • Warsaw University of Life Sciences - SGGW, Warsaw, Poland
  • Ajayi A.E., P. Oguntunde, A. Joseph, and M.dS. Dias Júnior. 2009. Numerical analysis of the impact of charcoal production on soil hydrological behaviour, runoff response and erosion susceptibility. Rev. Bras. Cienc. Solo. 33: 137–146.
  • Akhtar S.S., G. Li, M.N. Andersen and F. Liu. 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 138: 37–44.
  • Akhter A., K. Hage-Ahmed, G. Soja and S. Steinkellner. 2015. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusariumoxysporum f. sp. lycopersici. Frontiers in Plant Science 6(529): 1–13.
  • Akiyama K., K.-I. Matsuzaki and H. Hayashi. 2005. Plant sesqui-terpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827.
  • Ameloot N., S. de Neve, K. Jegajeevagan, G. Yildiz, D. Buchan, Y.N. Funkuin, W. Prins, L. Bouckaert and S. Sleutel. 2013. Short-term CO₂ and N₂O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology and Biochemistry. 57: 401–410.
  • Ameloot N., S. Sleutel, K.C. Das, J. Kanagaratnam and S. de Neve.2015. Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties. GCBBioenergy 7: 135–144.
  • Anderson C.R., L.M. Condron, T.J. Clough, M. Fiers, A. Stewart, R.A. Hill and R.R. Sherlock. 2011. Biochar induced soil microbial community change: Implications for biogeochemical cycling of car-bon, nitrogen and phosphorus. Pedobiologia 54: 309–320.
  • Atkinson C., J. Fitzgerald and N. Hipps. 2010. Potential mecha-nisms for achieving agricultural benefits from biochar application to temperate soils: a review. PlantSoil. 337: 1–18.
  • Atucha A. and G. Litus. 2015. Effect of biochar amendments on peach replant disease. HortSci. 50: 863–868.
  • Bailey V.L., S.J. Fansler, J.L. Smith and H. Bolton Jr. 2011. Recon-ciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. SoilBiol.Biochem. 43: 296–301.
  • Beesley L., E. Moreno-Jiménez and J.L. Gomez-Eyles. 2010. Effects of biochar and greenwaste compost amendments on mobility, bio-availability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 158: 2282–2287.
  • Birk J., C. Steiner, W. Teixiera, W. Zech and B. Glaser. 2009. Micro-bial response to charcoal amendments and fertilization of a highly weathered tropical soil. pp. 309–324. In: Woods W., W. Teixeira, J. Lehmann, C. Steiner, A. Winkler Prins and L. Rebellato (eds). Ama-zonian dark earths: Wim Sombroek’s vision. Springer, Netherlands.
  • Blackwell P., E. Krull, G. Butler, A. Herbert and Z. Solaiman. 2010. Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: an agronomic and eco-nomic perspective. Aust. J. Soil. Res. 48: 531–545.
  • Bridgwater A. and G.V. Peacocke. 2000. Fast pyrolysis processes for biomass. Renew. Sust. Energ. Rev. 4: 1–73.
  • Cao X., L. Ma, B. Gao and W. Harris. 2009. Dairy-Manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 43: 3285–3291.
  • Carter S., S. Shackley, S. Sohi, T.B. Suy and S. Haefele. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactucasativa) and cabbage (Brassicachinensis). Agronomy. 3: 404–418.
  • Chan K.Y., L. van Zwieten, I. Meszaros, A. Downie and S. Joseph. 2007. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 45: 629–634.
  • Chen J., X. Liu, J. Zheng, B. Zhang, H. Lu, Z. Chi, G. Pan, L. Li, J. Zheng, J. Zhang and others. 2013. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl. Soil Ecol. 71: 33–44.
  • Cheng C.-H., J. Lehmann, J.E. Thies, S.D. Burton and M.H. Engel-hard. 2006. Oxidation of black carbon by biotic and abiotic pro-cesses. Org.Geochem. 37: 1477–1488.
  • Cheng C.-H., J. Lehmann and M.H. Engelhard. 2008a. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Ac. 72: 1598–1610.
  • Cheng C.-H., J. Lehmann, J.E. Thies and S.D. Burton. 2008b. Sta-bility of black carbon in soils across a climatic gradient. J. Geophys. Res-Biogeo. 113: G02027(1–10).
  • Chintala R., T.E. Schumacher, S. Kumar, D.D. Malo, J.A. Rice, B. Bleakley, G. Chilom, D.E. Clay, J.L. Julson, S.K. Papiernik and others. 2014. Molecular characterization of biochars and their influence on microbiological properties of soil. J. Hazard Mater.279:244–256.
  • Cui H.-J., M. Wang, M.-L. Fu and E. Ci. 2011. Enhancing phos-phorus availability in phosphorus-fertilized zones by reducing phos-phate adsorbed on ferrihydrite using rice straw-derived biochar. J. Soil Sediment. 11: 1135–1141.
  • DeLuca T.H., M.D. MacKenzie, M.J. Gundale and W.E. Holben.2006. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci. Soc. Am. J. 70: 448–453.
  • DeLuca T.H., M.D. MacKenzie and M.J.Gundale. 2009. Biochar effects on soil nutrient transformations, pp. 251–270. In: Lehmann J. and S. Joseph (eds). Biochar for environmental management: Science and Technology. Earthscan, London.
  • Denyes M.J., V.S. Langlois, A. Rutter and B.A. Zeeb. 2012. The use of biochar to reduce soil PCB bioavailability to Cucurbitapepo and Eiseniafetida. Sci. Total Environ. 437: 76–82.
  • Dong D., M. Yang, C. Wang, H. Wang, Y. Li, J. Luo and W. Wu.2013. Responses of methane emissions and rice yield to applica-tions of biochar and straw in a paddy field. J. Soils Sediments. 13: 1450–1460.
  • Downie A., L. van Zwieten, K.Y. Chan, W. Doughtery and S. Joseph. 2007. Nutrient retention characteristics of agrichar and the agronomic implications. International Agrichar Initiative Con-ference, April 2007, Terrigal, NSW, Australia.
  • Dünisch O., V. Lima, G. Seehann, J. Donath, V. Montóia andT. Schwarz. 2007. Retention properties of wood residues and their potential for soil amelioration. Wood Sci. Technol. 41: 169–189.
  • Edelstein D.M. and D.J. Tonjes. 2011. Modeling an improvement in phosphorus utilization in tropical agriculture. J. Sustain. Agr. 36: 18–35.
  • Elad Y., D.R. David, Y.M. Harel, M. Borenshtein, H.B. Kalifa,A. Silber and E.R. Graber. 2010. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phyto-pathology 100: 913–921.
  • Elmer W.H. and J.J. Pignatello. 2011. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of Asparagus in replant soils. PlantDis. 95: 960–966.
  • Enders A., K. Hanley, T. Whitman, S. Joseph and J. Lehmann.2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. BioresourceTe c h n o l. 114: 644–653.
  • Eyles A., S.A. Bound, G. Oliver, R. Corkrey, M. Hardie, S. Green and D.C. Close. 2015. Impact of biochar amendment on the growth, physiology and fruit of a young commercial apple orchard. Tre es29: 1817–1826.
  • Ezawa T., K. Yamamoto and S. Yoshida. 2002. Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inor-ganic soil amendments. Soil Sci. Plant Nutr. 48: 897–900.
  • Farrell M., T.K. Kuhn, L.M. Macdonald, T.M. Maddern,D.V. Murphy, P.A. Hall, B.P. Singh, K. Baumann, E.S. Krull and J.A. Baldock. 2013. Microbial utilisation of biochar-derived carbon. Sci.To t a lEnviron. 465: 288–297.
  • Fox A., J. Gahan, I. Ikoyi, W. Kwapinski, O. O’Sullivan, P.D. Cot-ter and A. Schmalenberger. 2016. Miscanthus biochar promotes growth of spring barley and shifts bacterial community structures including phosphorus and sulfur mobilizing bacteria. Pedobiologia59: 195–202.
  • Free H., C. McGill, J. Rowarth and M. Hedley. 2010. The effect of biochars on maize (Zeamays) germination. New Zeal. J. Agr. Res. 53: 1–4.
  • George C., J. Kohler and M.C. Rillig. 2016. Biochars reduce infec-tion rates of the root-lesion nematode Pratylenchuspenetrans and associated biomass loss in carrot. Soil Biol. Biochem. 95: 11–18.
  • Gilroy S. and D.L. Jones. 2000. Through form to function: root hair development and nutrient uptake. Trends Plant Sci. 5: 56–60.
  • Glaser B., J. Lehmann and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol. Fert. Soils. 35: 219–230.
  • Glaser B., K. Wiedner, S. Seelig, H.-P. Schmidt and H. Gerber. 2015. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agrono. Sustain Dev. 35: 667–678.
  • Głodowska M., B. Husk, T. Schwinghamer and D. Smith. 2016. Biochar is a growth-promoting alternative to peat moss for the inoc-ulation of corn with a pseudomonad. Agrono. Sustain Dev. 36: 1–10.
  • Gomez J.D., K. Denef, C.E. Stewart, J. Zheng and M.F. Cotrufo.2014. Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur. J. Soil Sci. 65: 28–39.
  • Gomez-Eyles J.L., T. Sizmur, C.D. Collins and M.E. Hodson. 2011. Effects of biochar and the earthworm Eiseniafetida on the bioavail-ability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ. Pollut. 159: 616–622.
  • González M.E., M. Cea, J. Medina, A. González, M.C. Diez,P. Cartes, C. Monreal and R. Navia. 2015. Evaluation of biodegrad-able polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci. Total Environ. 505: 446–453.
  • Graber E., Y. Meller Harel, M. Kolton, E. Cytryn, A. Silber, D. Rav David, L. Tsechansky, M. Borenshtein and Y. Elad. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil. 337: 481–496.
  • Gryndler M., J. Larsen, H. Hršelová, V. Řezáčová, H. Gryndlerová and J. Kubát. 2006. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza. 16: 159–166.
  • Güereña D.T., J. Lehmann, J.E. Thies, A. Enders, N. Karanja and H. Neufeldt. 2015. Partitioning the contributions of biochar pro-perties to enhanced biological nitrogen fixation in common bean (Phaseolusvulgaris). Biol. Fert. Soils 51: 479–491.
  • Gundale M.J. and T.H. DeLuca. 2006. Temperature and source material influence ecological attributes of Ponderosa pine and Douglas-fir charcoal. Forest Ecol. Manag. 231: 86–93.
  • Hale S.E., J. Jensen, L. Jakob, P. Oleszczuk, T. Hartnik, T. Hen-riksen, G. Okkenhaug, V. Martinsen and G. Cornelissen. 2013. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates. Environ. Sci. Te c h n o l. 47: 8674–8683.
  • Hale L., M. Luth and D. Crowley. 2015. Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biol. Biochem. 81: 228–235.
  • Hammer E.C., Z. Balogh-Brunstad, I. Jakobsen, P.A. Olsson, S.L.S. Stipp and M.C. Rillig. 2014. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol. Biochem. 77: 252–260.
  • Hiltner L. 1904. New experiences and problems in the field of soil bacteriology with special consideration of the foundations and fal-low (in German). ArbDLGBerlin. 98: 59–78.
  • Hosseini Bai S., C.-Y. Xu, Z. Xu, T. Blumfield, H. Zhao, H. Wal-lace, F. Reverchon and L. van Zwieten. 2015. Soil and foliar nutrient and nitrogen isotope composition (δ15N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard. Environ. Sci. Pollut. Res. 22: 3803–3809.
  • Houben D., P. Sonnet and J.-T. Cornelis. 2014. Biochar from Mis-canthus: a potential silicon fertilizer. Plant Soil. 374: 871–882.
  • Ishii T. and K. Kadoya. 1994. Effects of charcoal as a soil condi-tioner on citrus growth and vesicular-arbuscular mycorrhizal devel-opment. J. Jpn. Soc. Hortic. Sci. 63: 529–535.
  • Jaafar N.M. 2014. Biochar as a habitat for arbuscular mycorrhizal fungi, pp. 297–311. In: Solaiman M.Z., K.L. Abbott and A. Varma (eds.), Mycorrhizal fungi: use in sustainable agriculture and land res-toration. Springer Berlin Heidelberg, Berlin, Heidelberg.
  • Jeffery S., F.G.A. Verheijen, M. van der Velde and A.C. Bastos.2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr. Ecosyst. Environ. 144: 175–187.
  • Jha P., A.K. Biswas, B.L. Lakaria and A.S. Rao. 2010. Biochar in agriculture-prospects and related implications. Curr. Sci. India 99: 1218–1225.
  • Jiang J., R. Xu, T. Jiang and Z. Li. 2012. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard Mater. 229–230: 145–150.
  • Jones D.L., J. Rousk, G. Edwards-Jones, T.H. DeLuca andD.V. Murphy. 2012. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45: 113–124.
  • Joseph S.D., M. Camps-Arbestain, Y. Lin, P. Munroe, C.H. Chia, J. Hook, L. van Zwieten, S. Kimber, A. Cowie, B.P. Singh and others. 2010. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 48: 501–515.
  • Kim S.-K., D.-H. Park, S.H. Song, Y.-J.Wee and G.-T. Jeong. 2013. Effect of fermentation inhibitors in the presence and absence of acti-vated charcoal on the growth of Saccharomycescerevisiae. Bioproc. Biosyst. Eng. 36: 659–666.
  • Kobayashi D.Y. and J.A. Crouch. 2009. Bacterial/fungal inter-actions: from pathogens to mutualistic endosymbionts. Ann. Rev. Phytopathol. 47: 63–82.
  • Kolb S.E., K.J. Fermanich and M.E. Dornbush. 2009. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci. Soc. Am. J. 73: 1173–1181.
  • Kothari S.K., H. Marschner and E. George. 1990. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. NewPhytol. 116: 303–311.
  • Laird D., P. Fleming, B. Wang, R. Horton and D. Karlen. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158: 436–442.
  • Lee J.W., B. Hawkins, X. Li and D.M. Day. 2013. Biochar fertil-izer for soil amendment and carbon sequestration, pp. 57–68. In: Lee W.J. (eds). Advanced Biofuels and Bioproducts. Springer New York, New York, NY.
  • Lehmann J., J. Pereira da Silva Jr., C. Steiner, T. Nehls, W. Zechand B. Glaser. 2003. Nutrient availability and leaching in an archa eological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. PlantSoil. 249: 343–357.
  • Lehmann J., M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday and D. Crowley. 2011 Biochar effects on soil biota – a review. Soil Biol. Biochem. 43:1812–1836.
  • Li D., W.C. Hockaday, C.A. Masiello and P.J.J. Alvarez. 2011. Earthworm avoidance of biochar can be mitigated by wetting. Soil Biol. Biochem. 43: 1732–1737.
  • Liang B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman,B. O’Neill, J.O. Skjemstad, J. Thies, F.J. Luizão, J. Petersen and others. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70: 1719–1730.
  • Liesch A., S. Weyers, J. Gaskin and K. Das. 2010. Impact of two different biochars on earthworm growth and survival. Ann. Environ. Sci. 4: 1–9.
  • Malińska K., M. Zabochnicka-Świątek, R. Cáceres and O. Marfà.2016. The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida dur-ing laboratory vermicomposting. Ecol.Eng. 90: 35–41.
  • Marks E.N., J. Alcañiz and X. Domene. 2014a. Unintended effects of biochars on short-term plant growth in a calcareous soil. Plant Soil. 385: 87–105.
  • Marks E.A.N., S. Mattana, J.M. Alcañiz and X. Domene. 2014b. Biochars provoke diverse soil mesofauna reproductive responses in laboratory bioassays. Eur. J. Soil Biol. 60: 104–111.
  • Marschner H. 1995. Mineral nutrition of higher plants, 2nd ed. Aca-demic Press, London.
  • Marschner P. 2012. Rhizosphere biology, pp. 369–388. In: Mar-schner P. (ed). Marschner’s mineral nutrition of higher plants, 3rd ed. Academic Press, San Diego.
  • Martin P., A. Glatzle, W. Kolb, H. Omay and W. Schmidt. 1989. N₂-fixing bacteria in the rhizosphere: quantification and hormo-nal effects on root development. Z Pflanzenernähr Bodenkd. 152: 237–245.
  • Masiello C.A., Y. Chen, X. Gao, S. Liu, H.-Y. Cheng, M.R. Ben-nett, J.A. Rudgers, D.S. Wagner, K. Zygourakis and J.J. Silberg.2013. Biochar and microbial signaling: production conditions deter-mine effects on microbial communication. Environ. Sci. Technol. 47: 11496–11503.
  • Matsubara Y., N. Hasegawa and H. Fukui. 2002. Incidence of Fusarium root rot in Asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J. Jpn. Soc. Hortic Sci. 71: 370–374.
  • McCormack S.A., N. Ostle, R.D. Bardgett, D.W. Hopkins and A.J. Vanbergen. 2013. Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes. GCB Bioenergy. 5: 81–95.
  • Mehari Z.H., Y. Elad, D. Rav-David, E.R. Graber and Y. Meller Harel. 2015. Induced systemic resistance in tomato (Solanumlyco-persicum) against Botrytiscinerea by biochar amendment involves jasmonic acid signaling. Plant Soil 395: 31–44.
  • Meller Harel Y., Y. Elad, D. Rav-David, M. Borenstein, R. Shul-chani, B. Lew and E. Graber. 2012. Biochar mediates systemic response of strawberry to foliar fungal pathogens. PlantSoil 357: 245–257.
  • Mia S., J.W. van Groenigen, T.F.J. van de Voorde, N.J. Oram,T.M. Bezemer, L. Mommer and S. Jeffery. 2014. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agr. Ecosyst. Envir. 191: 83–91.
  • Mitchell S.M., M. Subbiah, J.L. Ullman, C. Frear and D.R. Call.2015. Evaluation of 27 different biochars for potential sequestra-tion of antibiotic residues in food animal production environments.J. Environ. Chem. Eng. 3: 162–169.
  • Neuman G. and V. Römheld. 2012. Rhizosphere chemistry in relation to plant nutrition, pp. 347–368. In: Marschner P. (ed). Marschner’s mineral nutrition of higher plants, 3rd ed. Academic Press, San Diego.
  • Ni J., J.J. Pignatello and B. Xing. 2011. Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water. Environ. Sci. Technol. 45: 9240–9248.
  • Noguera D., M. Rondón, K.-R. Laossi, V. Hoyos, P. Lavelle,M.H. Cruz de Carvalho and S. Barot. 2010. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biol. Biochem. 42: 1017–1027.
  • Ojeda G., S. Mattana, A. Àvila, J.M. Alcañiz, M. Volkmann and J. Bachmann. 2015. Are soil-water functions affected by biochar application? Geoderma. 249–250: 1–11.
  • Parvage M., B. Ulén, J. Eriksson, J. Strock and H. Kirchmann.2013. Phosphorus availability in soils amended with wheat residue char. Biol. Fert. Soils. 49:245–250.
  • Pietikäinen J., O. Kiikkilä and H. Fritze. 2000. Charcoal as a habi-tat for microbes and its effect on the microbial community of the underlying humus. Oikos. 89: 231–242.
  • Piscitelli L., A. Shaaban, D. Mondelli, G.N. Mezzapesa, T.M. Mianoand S. Dumontet. 2015. Use of olive mill pomace biochar as a sup-port for soil microbial communities in an Italian sandy soil. SoilHorizons. 56: 1–7.
  • Postma J., E.H. Nijhuis and E. Someus. 2010. Selection of phos-phorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal. Appl. Soil Ecol. 46: 464–469.
  • Prendergast-Miller M.T., M. Duvall and S.P. Sohi. 2014. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur. J. Soil Sci. 65: 173–185.
  • Rillig M.C., M. Wagner, M. Salem, P.M. Antunes, C. George, H.-G. Ramke, M.-M. Titirici and M. Antonietti. 2010. Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl. Soil Ecol. 45: 238–242.
  • Rondon M.A., D. Molina, M. Hurtado, J. Ramirez, J. Lehmann,J. Major and E. Amezquita. 2006. Enhancing the productivityof crops and grasses while reducing greenhouse gas emissions through bio-char amendments to unfertile tropical soils, pp. 9–15. In: Eightteenth World Congress of Soil Science, Philadelphia, Penn-sylvania, USA.
  • Rutigliano F.A., M. Romano, R. Marzaioli, I. Baglivo, S. Baronti, F. Miglietta and S. Castaldi. 2014. Effect of biochar addition on soil microbial community in a wheat crop. Eur. J. Soil Biol. 60: 9–15.
  • Saranya K., P.S. Krishnan, K. Kumutha and J. French. 2011. Potential for biochar as an alternate carrier to lignite for the prepa-ration of biofertilizers in India. Int. J. Agric. Environ. Biotech. 4: 167–172.
  • Schnitzer M.I., C.M. Monreal and G. Jandl. 2007. The conver-sion of chicken manure to bio-oil by fast pyrolysis. III. Analysesof chicken manure, bio-oils and char by Py-FIMS and Py-FDMS.J. Environ. Sci. Heal B. 43: 81–95.
  • Siebers N., F. Godlinski and P. Leinweber. 2014. Bone char as phos-phorus fertilizer involved in cadmium immobilization in lettuce, wheat, and potato cropping. J. Plant Nutr. Soil Sci. 177: 75–83.
  • Sohi S.P., E. Krull, E. Lopez-Capel and R. Bol. 2010. A review of biochar and its use and function in soil. Adv. Agron. 105: 47–82.
  • Spokas K., J. Baker and D. Reicosky. 2010. Ethylene: potential key for biochar amendment impacts. PlantSoil 333: 443–452.
  • Spokas K.A., K.B. Cantrell, J.M. Novak, D.W. Archerk, J.A. Ippo-lito, H.P. Collins, A.A. Boateng,I.M. Lima, M.C. Lamb, A.J. McAloon and others. 2012a. Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 41: 973–989.
  • Spokas K., J. Novak and R. Venterea. 2012b. Biochar’s role as an alternative N-fertilizer: ammonia capture. PlantSoil. 350: 35–42.
  • Steiner C., K.C. Das, M. Garcia, B. Förster and W. Zech. 2008. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51: 359–366.
  • Steiner C., M. Garcia and W. Zech. 2009. Effects of charcoal as slow release nutrient carrier on N-P-K dynamics and soil microbial population: pot experiments with Ferralsol substrate, pp. 325–338. In: Woods W., W. Teixeira, J. Lehmann, C. Steiner, A. WinklerPrins and L. Rebellato (eds.). Amazonian Dark Earths: Wim Sombroek’s Vision. Springer, Netherlands.
  • Street T.A., R.B. Doyle and D.C. Close. 2014. Biochar media addi-tion impacts apple rootstock growth and nutrition. Hort Sci. 49: 1188–1193.
  • Sun D., L. Hale and D. Crowley. 2016. Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier. Biol. Fertil Soils 52: 515–522.
  • Thies J.E. and M. Rillig. 2009. Characteristics of biochar: biological properties, pp. 85–105. In: Lehmann J. and S. Joseph (eds). Biochar for environmental management: science and technology. Earthscan, London.
  • Van Zwieten L., S. Kimber, S. Morris, K.Y Chan., A. Downie,J. Rust, S. Joseph and A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327: 235–246.
  • Vanek S.J., J. Thies, B. Wang, K. Hanley and J. Lehmann. 2016. Pore-size and water activity effects on survival of Rhizobiumtropici in biochar inoculant carriers. J. Microb. Biochem. Technol. 8: 296–306.
  • Vassilev N., E. Martos, G. Mendes, V. Martos and M. Vassileva. 2013. Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity? J. Sci. Food Agr. 93: 1799–1804.
  • Ventura M., C. Zhang, E. Baldi, F. Fornasier, G. Sorrenti, P. Pan-zacchi and G. Tonon. 2014. Effect of biochar addition on soil res-piration partitioning and root dynamics in an apple orchard. Eur. J. Soil Sci. 65: 186–195.
  • Wang Q., L. Chen, L.-Y. He and X.-F. Sheng. 2016. Increasedbiomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth-promoting Neorhi-zobiumhuautlense T1-17 and biochar. Agr. Ecosyst. Environ. 228: 9–18.
  • Wang Y., F. Pan, G. Wang, G. Zhang, Y. Wang, X. Chen andZ. Mao. 2014. Effects of biochar on photosynthesis and antioxidative system of Malushupehensis Rehd. seedlings under replant condi-tions. Sci. Hortic. 175: 9–15.
  • Wang Z.Y., H. Zheng, Y. Luo, X. Deng, S. Herbert and B.S. Xing.2013. Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environ. Pollut. 174: 289–296.
  • Wang Z., H. Zong, H. Zheng, G. Liu, L. Chen and B. Xing. 2015. Reduced nitrification and abundance of ammonia-oxidizing bacte-ria in acidic soil amended with biochar. Chemosphere 138: 576–583.
  • Warnock D.D., D.L. Mummey, B. McBride, J. Major, J. Lehmann and M.C. Rillig. 2010. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl. Soil Ecol. 46: 450–456.
  • William K. and R.A. Qureshi. 2015. Evaluation of biochar as fer-tilizer for the growth of some seasonal vegetables. J. Bioresource Manage 2(1): 41–46.
  • Yamato M., Y. Okimori, I.F. Wibowo, S. Anshori and M. Ogawa.2006. Effects of the application of charred bark of Acaciamangiumon the yield of maize, cowpea and peanut, and soil chemical proper-ties in South Sumatra, Indonesia. Soil Sci. Plant Nutr. 52: 489–495.
  • Yanai Y., K. Toyota and M. Okazaki. 2007. Effects of charcoal addi-tion on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr. 53: 181–188.
  • Yao Y., B. Gao, M. Zhang, M. Inyang and A.R., Zimmerman.2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere89: 1467–1471.
  • Yilangai M.R., A.S. Manu, W. Pineau, S.S. Mailumo and K.I. Okeke-Agulu. 2014. The effect of biochar and crop veil on growth and yield of tomato (Lycopersicumesculentus Mill) in Jos, North central Nigeria. Curr. Agri. Res. 2(1): 37–42.
  • Zwetsloot M.J., J. Lehmann, T. Bauerle, S. Vanek, R. Hestrin and A. Nigussie. 2016. Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions. PlantSoil 1–11.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.