Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 3 |
Tytuł artykułu

Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and floating units

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper considers the issue of thermo-chemical recovery of engine’s waste heat and its further use for steam conversion of the associated gas for oil and gas floating units. The characteristics of the associated gas are presented, and problems of its application in dual-fuel medium-speed internal combustion engines are discussed. Various variants of combined diesel-gas turbine power plant with thermo-chemical heat recovery are analyzed. The heat of the gas turbine engine exhaust gas is utilized in a thermo-chemical reactor and a steam generator. The engines operate on synthesis gas, which is obtained as a result of steam conversion of the associated gas. Criteria for evaluating the effectiveness of the developed schemes are proposed. The results of mathematical modeling of processes in a 14.1 MW diesel-gas turbine power plant with waste heat recovery are presented. The effect of the steam/associated gas ratio on the efficiency criteria is analyzed. The obtained results indicate relatively high effectiveness of the scheme with separate high and low pressure thermo-chemical reactors for producing fuel gas for both gas turbine and internal combustion engines. The calculated efficiency of such a power plant for considered input parameters is 45.6%
Słowa kluczowe
Opis fizyczny
  • Admiral Markov National University of Shipbuilding, Heroyiv Ukraine av.9, 54025 Mykolayiv, Ukraine
  • Admiral Markov National University of Shipbuilding, Heroyiv Ukraine av.9, 54025 Mykolayiv, Ukraine
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • 1. WOR 3 (2014): Marine Resources – Opportunities and Risks. Retrieved from
  • 2. Olszewski W., Dzida M. (2018): Selected Combined Power Systems Consisted of Self-Ignition Engine and Steam Turbine. Polish Maritime Research, No.1, Vol. 25, 198–203.
  • 3. Domachowski Z., Dzida M. (2019): Applicability of Inlet Air Fogging to Marine Gas Turbine. Polish Maritime Research, No.1, Vol. 26, 15–19.
  • 4. Mazzetti M. J., Nekså P., Walnum H. T., Hemmingsen A. T. (2014): Energy-Efficient Technologies for Reduction of Offshore CO2 Emissions. Oil and Gas Facilities, February 2014, 8996.
  • 5. Szymaniak M. (2018): Steam Turbine Stage Modernisation in Front of the Extraction Point. Polish Maritime Research, No.2, Vol. 25, 116–122.
  • 6. Sarnecki J., Białecki T., Gawron B., Głąb J., Kamiński J., Kulczycki A., Romanyk K. (2019) Thermal Degradation Process of Semi-Synthetic Fuels for Gas Turbine Engines in Non-Aeronautical Applications. Polish Maritime Research, No.1, Vol. 26, 65–71.
  • 7. Michael Farry (1998) Ethane from associated gas still the most economical. Retrieved from , Accessed 20 May 2019.
  • 8. Al-Saleh M.A., Duffuaa S.O.,. Al-Marhoun M.A, Al-Zayer J.A. (1991): Impact of crude oil production on the petrochemical industry in Saudi Arabia. Retrieved from
  • 9. Nguyen T., Elmegaard B., Pierobon L., Haglind F., Breuhaus P. (2012): Modelling and analysis of offshore energy systems on North Sea oil and gas platforms. 53-rd International Conference of Scandinavian Simulation Society, SIMS 2012. Retrieved from
  • 10. F o s s M . M . (2 0 0 4) : Interstate natural gas quality specifications & interchangeability. Center for Energy Economics. Retrieved from
  • 11. Oil & Gas Industry Overview (2019): Crude Oil and Natural Gas: From Source to Final Products. Retrieved from
  • 12. WÄ R T S I L Ä(2019): Wärtsilä Methane number calculator. Retrieved from
  • 13. ISO/TR 22302:2014 (2014): Natural gas. Calculation of methane number.
  • 14 . WÄ R T S I L Ä(2015): Wärtsilä GasReformer. Retrieved from
  • 15. Gatsenko NA., Serbin SI. (1995). Arc plasmatrons for burning fuel in industrial installations, Glass and Ceramics, vol. 51 (11-12), 383–386
  • 16. Matveev I. B., Tropina A. A., Serbin S. I., Kostyuk V. Y. (2008): Arc modeling in a plasmatron channel. IEEE Trans. Plasma Sci., No.1, Vol. 36, part 2, 293–298.
  • 17. Serbin SI, Matveev IB, Goncharova MA (2014). Plasma Assisted Reforming of Natural Gas for GTL. Part I, IEEE Tra n s . Pl a s m a S c i ., vol. 42, no. 12, pp. 3896-3900
  • 18. Matveev I., Matveeva S., Serbin S. (2007): Design and Preliminary Result of the Plasma Assisted Tornado Combustor. Collection of Technical Papers - 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, AIAA 2007-5628, Vol. 6, 6091-6098.
  • 19. Matveev I., Serbin S. (2012): Investigation of a reverse-vortex plasma assisted combustion system. Proc. of t he ASM E 2012 Heat Transfer Summer Conf., Puerto Rico, USA, HT2012-58037, 133-140.
  • 20. Matveev I., Serbin S., (2006): Experimental and Numerical Definition of the Reverse Vortex Combustor Parameters.44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2006-0551, 6662-6673.
  • 21. Cherednichenko O., Serbin S. (2018): Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat. J. Marine. Sci. Appl. No.1, Vol. 17, 122-130.
  • 22. Serbin S.I. (2006): Features of liquid-fuel plasma-chemical gasification for diesel engines. IEEE Trans. Plasma Sci., 6, No.vol. 34, 2488-2496.
  • 23. Serbin S.I. (1998): Modeling and Experimental Study of Operation Process in a Gas Turbine Combustor with a Plasma-Chemical Element. Combustion Science and Technology, Vol. 139, 137-158.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.