PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 5 |

Tytuł artykułu

Analysis of unstable hydrofoil energy-capturing motion due to energy dissipation

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
As energy crises and environmental pollution become increasingly prominent, people are beginning to explore the ocean to exploit its renewable energy. Based on hydrodynamic principles, an analytical model for unstable hydrofoil motion has been developed. The software ANSYS Fluent was employed to perform a simulation of hydrofoil motion, and the effect of hydrofoil motion on the surrounding flow field was analyzed. The hydrodynamic characteristics and energy-capturing efficiency of the hydrofoil were obtained, and the influence of complex flows on hydrofoil hydrodynamics was elucidated. The energy dissipation mechanism during hydrofoil motion was characterized. The results indicate that the vortex generation and shedding inevitably dissipates part of the tidal energy captured by the hydrofoil, which leads to abrupt changes in hydrofoil hydrodynamics and reduces energy-capturing efficiency. When the frequency of the abrupt hydrodynamics change matches the hydrofoil natural frequency, it may result in hydrofoil resonance and damage. Also, it is observed that larger pitch amplitude leads to larger optimalreduced frequency corresponding to the peak power cycle-averaged coefficient. The results also provide a theoretical guide on how to improve hydrofoil energy-capturing efficiency of the power generation system with control valves and extend hydrofoil life.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

5

Opis fizyczny

p.2315-2324,fig.,ref.

Twórcy

autor
  • School of Mechanical Engineering, Shandong University, Shandong, China
  • Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong, China
autor
  • School of Mechanical Engineering, Shandong University, Shandong, China
  • Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong, China
autor
  • School of Mechanical Engineering, Shandong University, Shandong, China
  • Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong, China
autor
  • School of Mechanical Engineering, Shandong University, Shandong, China
  • Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong, China
autor
  • School of Mechanical Engineering, Shandong University, Shandong, China
  • Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong, China

Bibliografia

  • 1. JOSLIN J. Evaluating environmental risks for marine renewable energy. Sea Technology, 57 (2), 73, 2016.
  • 2. LI W., ZHANG H.X. Decomposition analysis of energy efficiency in China’s Beijing-Tianjin-Hebei region. Polish Journal of Environment Studies, 26 (1), 189, 2017.
  • 3. OUREILIDIS K.O., BAKIRTZIS E.A., DEMOULIAS C.S. Frequency-based control of islanded microgrid with renewable energy sources and energy storage. Journal of Modern Power Systems and Clean Energy, 4 (1), 54, 2016.
  • 4. HARDING S.F., PAYNE G.S., BRYDEN I.G. Generating controllable velocity fluctuations using twin oscillating hydrofoils: experimental validation. Journal of Fluid Mechanics, 750, 113, 2014.
  • 5. HARDING S.F., BRYDEN I.G. Generating controllable velocity fluctuations using twin oscillating hydrofoils. Journal of Fluid Mechanics, 713, 150, 2012.
  • 6. MUNCH C., AUSONI P., BRAUN O., FARHAT M., AVELLAN F. Fluid-structure coupling for an oscillating hydrofoil. Journal of Fluids and Structures, 26 (6), 1018, 2010.
  • 7. LIU Z., HYUN B.S., KIM M.R., JIN J.Y. Experimental and numerical study for hydrodynamic characteristics of an oscillating hydrofoil. Journal of Hydrodynamics, 20 (3), 280, 2008.
  • 8. SATO K., TANADA M., MONDEN S., TSUJIMOTO Y. Observations of oscillating cavitation on a flat plate hydrofoil. JSME International Journal Series B-Fluids and Thermal Engineering, 45 (3), 646, 2002.
  • 9. KIRKE B. Tests on two small variable pitch cross flow hydrokinetic turbines. Energy for Sustain Able Development, 31, 185, 2016.
  • 10. LI H., CHANDRASHEKHAR K. Particle swarm-based structural optimization of laminated composite hydrokinetic turbine blades. Engineering Optimization, 47 (9), 1191, 2015.
  • 11. FENERCIOGLU I., ZALOGLU B., YOUNG J., ASHRAF M.A., LAI J.C.S., PLATZER M.F. Flow structures around an oscillating-wing power generator. AIAA Journal, 52 (11), 3316, 2015.
  • 12. MCKINNEY W., DELAURIER J. The wingmill: An oscillating-wing windmill. Journal of Energy, 5 (2), 109, 1981.
  • 13. JONES K., LINDSEY K., PLATZER M. An investigation of the fluid structure interaction in an oscillating-wing micro-hydropower generator. Physics of Atomic Nuclei, 65 (2), 73, 2003.
  • 14. AMIRALAEI M.R., ALIGHANBARI H., HASHEMI S.M. Flow field characteristics study of a flapping airfoil using computational fluid dynamics. Journal of Fluids and Structures, 27 (7), 1068, 2011.
  • 15. AMIRALAEI M.R., ALIGHANBARI H., HASHEMI S.M. An investigation into the effects of unsteady parameters on the aerodynamics of a low Reynolds number pitching airfoil. Journal of Fluids and Structures, 26 (6), 979, 2010.
  • 16. THIERY M., COUSTOLS E. URANS computations of shock-induced oscillations over 2D rigid airfoils: influence of test section geometry. Flow Turbulence and Combustion, 74 (4), 331, 2005.
  • 17. THIERY M., COUSTOLS E. Numerical prediction of shock induced oscillations over a 2D airfoil: Influence of turbulence modelling and test section walls. International Journal of Heat and Fluid Flow, 27 (4), 661, 2006.
  • 18. ASHRAF M.A., YOUNG J., LAI J.C.S., PLATZER M.F. Numerical analysis of an oscillating-wing wind and hydropower generator. AIAA Journal, 49 (7), 1374, 2011.
  • 19. YOUNG J., LAI J.C.S. Oscillation frequency and amplitude effects on the wake of a plunging airfoil. AIAA journal, 42 (10), 2042, 2004.
  • 20. BENRAMDANE S., CEXUS J.C., BOUDRAA A.O., ASTOLFI J.A. Time-frequency analysis of pressure fluctuations on a hydrofoil undergoing a transient pitching motion using Hilbert-Huang and Teager-Huang transforms. Proceedings of the ASME Pressure Vessels and Piping Conference- Fluid-Structure Interaction, 4, 199, 2007.
  • 21. GHASEMI A., OLINGER D.J., TRYGGVASON G. A nonlinear computational model of tethered underwater kites for power generation. Journal of Fluids Engineering, Transactions of the ASME, 138 (12), 121401, 2016.
  • 22. GHASEMI A., OLINGER D.J., TRYGGVASON G. Computational simulation of tethered undersea kites for power generation. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 6B, 50809, 2016.
  • 23. SAGHARICHI A., MAGHREBI M.J., ARABGOLARCHEH A. Variable pitch blades: an approach for improving performance of Darrieus wind turbine. Journal of Renewable and Sustainable Energy, 8 (5), 053305, 2016.
  • 24. ZHU Q., Optimal frequency for flow energy harvesting of a flapping foil. Journal of Fluid Mechanics, 675, 495, 2011.
  • 25. SHIMIZU E., ISOGAI K., OBAYASHI S. Multiobjective design study of a flapping wing power generator. Journal of Fluids Engineering, Transactions of the ASME, 130 (2), 021104, 2008.
  • 26. YOUNG J., LAI J.C.S., PLATZER M.F. A review of progress and challenges in flapping foil power generation. Progress in Aerospace Sciences, 67, 2, 2014.
  • 27. XIAO Q., LIAO W., YANG S.C., PENG Y. How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil. Renewable Energy, 37 (1), 61, 2012.
  • 28. DUGUNDJI J. Theoretical considerations of panel flutter at high supersonic mach numbers. AIAA Journal, 4 (7), 1257, 1966.
  • 29. WILSON E.L., KHALVATI M. Finite elements for the dynamic analysis of fluid-solid systems. International Journal for Numerical Methods in Engineering, 19 (11), 1657, 1983.
  • 30. GREGORY F., VARGAS L., M. LUIS. Nonlinear dynamic analysis of fluid-structure systems. Journal of Engineering Mechanics, 114 (2), 219, 1988.
  • 31. AKCABAY D.T., YOUNG Y.L. Influence of cavitation on the hydroelastic stability of hydrofoils. Journal of Fluids and Structures, 49, 170, 2014.
  • 32. KARPERAKI A.E., BELIBASSAKIS K.A., PAPATHANASIOU T.K. Time-domain, shallow-water hydroelastic analysis of VLFS elastically connected to the seabed. Marine Structures, 48, 33, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2d27f08a-0050-462f-91a9-6ed68e602691
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.