PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 78 | 4 |

Tytuł artykułu

Lin28 overexpression inhibits neurite outgrowth of primary cortical neurons in vitro

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Lin28 has been shown to promote proliferation of progenitors and survival of neurons during cortical neurogenesis. However, the role of Lin28 in the terminal maturation of neurons remains obscured. In this study, we investigated the developmental impact of Lin28 overexpression on neurite outgrowth. Lin28 expression was upregulated by in utero electroporation at E14.5. Two days later, electroporated cortices were dissociated for culturing primary cortical neurons. We found that Lin28 overexpression, which was confirmed immunocytochemically, led to neurite underdevelopment for all time points during culture. Specifically, Lin28‑overexpressing cells displayed significantly fewer primary neurites and a decreased dendritic branching index, compared to GFP‑expressing controls. Additionally, Lin28 overexpression in primary cortical neurons induced the expression of high mobility group AT‑Hook 2 (HMGA2). Taken together, our study demonstrates that constitutive Lin28 expression disrupts cortical neurogenesis resulting in impaired neurite outgrowth with a concomitant induction of HMGA2.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

78

Numer

4

Opis fizyczny

p.297-304,fig.,ref.

Twórcy

  • Department of Neurology, University of Pittsburgh, Pittsburgh, USA
autor
  • Department of Pharmacology, Department of Biomedicine and Health Sciences, Catholic Neuroscience Institute, College of Medicine, Catholic University of Korea, Seoul, South Korea
autor
  • Department of Pharmacology, Department of Biomedicine and Health Sciences, Catholic Neuroscience Institute, College of Medicine, Catholic University of Korea, Seoul, South Korea

Bibliografia

  • Balzer E, Heine C, Jiang Q, Lee VM, Moss EG (2010) LIN28 alters cell fate succession and acts independently of the let‑7 microRNA during neuro‑ gliogenesis in vitro. Development 137: 891–900.
  • Bhuiyan MI, Kim HB, Kim SY, Cho KO (2011) The neuroprotective poten‑ tial of cyanidin‑3‑glucoside fraction extracted from mulberry following oxygen‑glucose deprivation. Korean J Physiol Pharmacol 15: 353–361.
  • Bhuiyan MI, Kim JY, Ha TJ, Kim SY, Cho KO (2012) Anthocyanins extracted from black soybean seed coat protect primary cortical neurons against in vitro ischemia. Biol Pharm Bull 35: 999–1008.
  • Bhuiyan MI, Lee JH, Kim SY, Cho KO (2013) Expression of exogenous LIN28 contributes to proliferation and survival of mouse primary cortical neu‑ rons in vitro. Neuroscience 248: 448–458.
  • Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hip‑ pocampal neurons in B27‑supplemented Neurobasal, a new serum‑free medium combination. J Neurosci Res 35: 567–576.
  • Chiu SL, Cline HT (2010) Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 5: 7.
  • Cimadamore F, Amador‑Arjona A, Chen C, Huang CT, Terskikh AV (2013) SOX2‑LIN28/let‑7 pathway regulates proliferation and neurogenesis in neural precursors. Proc Natl Acad Sci 110: E3017‑E3026.
  • Fujii Y, Kishi Y, Gotoh Y (2013) IMP2 regulates differentiation potentials of mouse neocortical neural precursor cells. Genes Cells 18: 79–89.
  • Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17: 103–111.
  • Gilbert J, Man HY (2017) Fundamental elements in autism: from neurogene‑ sis and neurite growth to synaptic plasticity. Front Cell Neurosci 11: 359.
  • Gordon‑Weeks PR (2004) Microtubules and growth cone function. J Neu‑ robiol 58: 70–83.
  • Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP, van Oudenaarden A, Jaenisch R (2009) Direct cell reprogramming is a sto‑ chastic process amenable to acceleration. Nature 462: 595–601.
  • Hirning‑Folz U, Wilda M, Rippe V, Bullerdiek J, Hameister H (1998) The ex‑ pression pattern of the Hmgic gene during development. Genes Chro‑ mosomes Cancer 23: 350–357.
  • Kiryushko D, Berezin V, Bock E (2004) Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 1014: 140–154.
  • Kishi Y, Fujii Y, Hirabayashi Y, Gotoh Y (2012) HMGA regulates the global chromatin state and neurogenic potential in neocortical precursor cells. Nat Neurosci 15: 1127–1133.
  • Lee YS, Dutta A (2007) The tumor suppressor microRNA let‑7 represses the HMGA2 oncogene. Genes Dev 21: 1025–1030.
  • Ma XY, Li CC, Sun LC, Huang D, Li TT, He XP, Wu GW, Yang Z, Zhong XY, Song LB, Gao P, Zhang HF (2014) Lin28/let‑7 axis regulates aerobic gly‑ colysis and cancer progression via PDK1. Nat Commun 5: 5212.
  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cel‑ lular functions. Nat Rev Mol Cell Biol 9: 446–454.
  • Morgado AL, Rodrigues CM, Sola S (2016) MicroRNA‑145 regulates neural stem cell differentiation through the Sox2‑Lin28/let‑7 signaling path‑ way. Stem Cells 34: 1386–1395.
  • Moss EG, Lee RC, Ambros V (1997) The cold shock domain protein LIN‑28 controls developmental timing in C. elegans and is regulated by the lin‑4 RNA. Cell 88: 637–646.
  • Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self‑renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135: 227–239.
  • Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high‑expres‑ sion transfectants with a novel eukaryotic vector. Gene 108: 193–199.
  • Olsson‑Carter K, Slack FJ (2010) A developmental timing switch promotes axon outgrowth independent of known guidance receptors. PLoS Genet 6: e1001054.
  • Perycz M, Urbanska AS, Krawczyk PS, Parobczak K, Jaworski J (2011) Zip‑ code binding protein 1 regulates the development of dendritic arbors in hippocampal neurons. J Neurosci 31: 5271–5285.
  • Petri R, Pircs K, Jonsson ME, Akerblom  M, Brattas PL, Klussendorf T, Jakobsson J (2017) let‑7 regulates radial migration of new‑born neurons through positive regulation of autophagy. EMBO J 36: 1379–1391.
  • Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D, Gregory RI (2011) Lin28A and Lin28B in‑ hibit let‑7 microRNA biogenesis by distinct mechanisms. Cell 147: 1066–1079.
  • Polesskaya A, Cuvellier S, Naguibneva I, Duquet A, Moss EG, Harel‑Bellan A (2007) Lin‑28 binds IGF‑2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev 21: 1125–1138.
  • Sanosaka T, Namihira M, Asano H, Kohyama J, Aisaki K, Igarashi K, Kanno J, Nakashima K (2008) Identification of genes that restrict astrocyte differ‑ entiation of midgestational neural precursor cells. Neuroscience 155: 780–788.
  • Shinoda G, Shyh‑Chang N, Soysa TY, Zhu H, Seligson MT, Shah SP, Abo‑Sido N, Yabuuchi A, Hagan JP, Gregory RI, Asara JM, Cantley LC, Moss EG, Daley GQ (2013) Fetal deficiency of lin28 programs life‑long aberrations in growth and glucose metabolism. Stem Cells 31: 1563–1573.
  • Shyh‑Chang N, Zhu H, Yvanka de Soysa T, Shinoda G, Seligson MT, Tsanov KM, Nguyen L, Asara JM, Cantley LC, Daley GQ (2013) Lin28 en‑ hances tissue repair by reprogramming cellular metabolism. Cell 155: 778–792.
  • Song HJ, Stevens CF, Gage FH (2002) Neural stem cells from adult hippo‑ campus develop essential properties of functional CNS neurons. Nat Neurosci 5: 438–445.
  • Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuro‑ nal migration in the developing cortex. Neuroscience 103: 865–872.
  • Thornton JE, Gregory RI (2012) How does Lin28 let‑7 control development and disease? Trends Cell Biol 22: 474–482.
  • Vukicevic  V, Jauch A, Dinger TC, Gebauer  L, Hornich  V, Bornstein SR, Ehrhart‑Bornstein  M, Muller AM (2010) Genetic instability and dimin‑ ished differentiation capacity in long‑term cultured mouse neurosphere cells. Mech Ageing Dev 131: 124–132.
  • West JA, Viswanathan SR, Yabuuchi A, Cunniff K, Takeuchi A, Park IH, Sero JE, Zhu H, Perez‑Atayde A, Frazier AL, Surani MA, Daley GQ (2009) A role for Lin28 in primordial germ‑cell development and germ‑cell ma‑ lignancy. Nature 460: 909–913.
  • Xu B, Zhang K, Huang Y (2009) Lin28 modulates cell growth and associates with a subset of cell cycle regulator mRNAs in mouse embryonic stem cells. RNA 15: 357–361.
  • Yang DH, Moss EG (2003) Temporally regulated expression of Lin‑28 in diverse tissues of the developing mouse. Gene Expr Patterns 3: 719–726.
  • Yang  M, Yang SL, Herrlinger S, Liang C, Dzieciatkowska  M, Hansen KC, Desai R, Nagy A, Niswander L, Moss EG, Chen JF (2015) Lin28 promotes the proliferative capacity of neural progenitor cells in brain develop‑ ment. Development 142: 1616–1627.
  • Yokoyama S, Hashimoto  M, Shimizu H, Ueno‑Kudoh H, Uchibe K, Kimura I, Asahara H (2008) Dynamic gene expression of Lin‑28 during embryonic development in mouse and chicken. Gene Expr Patterns 8: 155–160.
  • Yu J, Vodyanik MA, Smuga‑Otto K, Antosiewicz‑Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920.
  • Zhou X, Benson KF, Przybysz K, Liu J, Hou Y, Cherath  L, Chada K (1996) Genomic structure and expression of the murine Hmgi‑c gene. Nucleic Acids Res 24: 4071–4077.
  • Zhu H, Shah S, Shyh‑Chang N, Shinoda G, Einhorn WS, Viswanathan SR, Takeuchi A, Grasemann C, Rinn JL, Lopez MF, Hirschhorn JN, Palmert MR, Daley GQ (2010) Lin28a transgenic mice manifest size and puberty phe‑ notypes identified in human genetic association studies. Nat Genet 42: 626–630.
  • Zhu H, Shyh‑Chang N, Segre AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, Urbach A, Thornton JE, Triboulet R, Gregory  RI, DIAGRAM Consortium, MAGIC Investigators, Altshuler D, Daley GQ (2011) The Lin28/let‑7 axis regulates glucose me‑ tabolism. Cell 147: 81–94.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2ce283ab-8607-4280-85b3-3396d36f2681
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.