PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 77 | 1 |

Tytuł artykułu

Nicorandil attenuates neuronal mitochondrial dysfunction and oxidative stress associated with murine model of vascular calcification

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Evidences suggest that the presence of chronic kidney disease (CKD) is associated with cerebrovascular diseases related cognitive decline in dialysis patients. As mitochondrial dysfunction is implicated in neurodegenerative disorders, we hypothesized that changes in brain mitochondria occur due to vascular calcification induced by renal failure and the opening of the mitochondrial potassium channel using nicorandil may prevent its dysfunction. Brain tissues from rats with vascular calcification were studied. Nicorandil (7.5 mg/kg b.wt.) was given either concomitantly or after the induction of calcification. The brain tissues were evaluated for antioxidant capacity, mitochondrial enzymes and oxidative phosphorylation efficiency along with the progression of calcification. The results suggested that renal failure, elevated the calcium, phosphorus product in the brain. The brain cytoplasm and mitochondrial fractions showed an elevated TBARS and a corresponding decline in the antioxidant enzymes, indicating a severe oxidative stress. The elevated brain mitochondrial enzymes like NADH dehydrogenase, and succinate dehydrogenase in the disease control groups, reversed to the near control level after nicorandil treatment. We observed that nicorandil was more effective when given after calcification. It reduced the biochemical alterations associated with calcium and phosphorous toxicity in the brain, by preserving mitochondria, the key target for treating neurodegenerative diseases.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

77

Numer

1

Opis fizyczny

p.57-67,fig.,ref.

Twórcy

autor
  • Vascular Biology Lab, SASTRA University, Thanjavur, India
  • School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
autor
  • School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
autor
  • Vascular Biology Lab, SASTRA University, Thanjavur, India

Bibliografia

  • Ahn SY, Choi YS, Koo HJ, Jeong JH, Park WH, Kim M, Piao Y, Pak YK (2010) Mitochondrial dysfunction enhances the migration of vascular smooth muscles cells via suppression of Akt phosphorylation. Biochim Biophys Acta 1800(3): 275–281.
  • Barrientos A, Fontanesi F, Diaz F (2009) Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays. Curr Protoc Hum Genet. Chapter 19. Unit 19.3.
  • Carreira RS, Monteiro P, Kowaltowski AJ, Goncalves LM, Providencia LA (2008) Nicorandil protects cardiac mitochondria against permeability transition induced by ischemia‑reperfusion. J Bioenerg Biomembr 40(2): 95–102.
  • Contreras L, Satrustegui J (2009) Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/ mitochondrial dehydrogenase pathways. J Biol Chem 284(11): 7091–7099.
  • Drew DA, Weiner DE (2014) Cognitive impairment in chronic kidney disease: keep vascular disease in mind. Kidney Int 85(3): 505–507.
  • Goldblith SA, Proctor BE (1950) Photometric determination of catalase activity. J Biol Chem 187(2): 705–709.
  • Goldschmidt  M, Landzberg BR, Frishman WH (1996) Nicorandil: a  potassium channel opening drug for treatment of ischemic heart disease. J Clin Pharmacol 36(7): 559–572.
  • Ishii H, Toriyama T, Aoyama T, Takahashi H, Yamada S, Kasuga H, Ichimiya  S, Kanashiro  M, Mitsuhashi H, Maruyama S, Matsuo S, Naruse K, Matsubara T, Murohara T (2007) Efficacy of oral nicorandil in patients with end‑stage renal disease: a retrospective chart review after coronary angioplasty in Japanese patients receiving hemodialysis. Clin Ther 29(1): 110–122.
  • Kurian GA, Rajamani T, Ramanarayanan P, Paddikkala J (2009) A comparative study on in vitro and in vivo antioxidant activities of aqueous extract of Desmodium gangeticum (Leguminosae) root. International Journal of Green Pharmacy 3(4): 8.
  • Lai JC, Clark JB (1979) Preparation of synaptic and nonsynaptic mitochondria from mammalian brain. Methods Enzymol 55: 51–60.
  • Martens ME, Chang CH, Lee CP (1986) Reye’s syndrome: mitochondrial swelling and Ca2+ release induced by Reye’s plasma, allantoin, and salicylate. Arch Biochem Biophys 244(2): 773–786.
  • Millane T, Wilson AJ, Patel MK, Jennison SH, Holt DW, Murday AJ, Camm AJ (1994) Mitochondrial calcium deposition in association with cyclosporine therapy and myocardial magnesium depletion: a  serial histologic study in heart transplant recipients. J Heart Lung Transplant 13(3): 473–480.
  • Mullinax TR, Mock JN, McEvily AJ, Harrison JH (1982) Regulation of mitochondrial malate dehydrogenase. Evidence for an allosteric citrate‑binding site. J Biol Chem 257(22): 13233–13239.
  • Nakae I, Takaoka A, Mitsunami K, Yabe T, Ito  M, Masayuki, Takahashi, Matsumoto T, Omura T, Yokohama H, Kinoshita  M (2000) Cardioprotective effects of nicorandil in rabbits anaesthetized with halothane: potentiation of ischaemic preconditioning via KATP channels. Clin Exp Pharmacol Physiol 27(10): 810–817.
  • Nandi A, Chatterjee IB (1988) Assay of superoxide dismutase activity in animal tissues. Journal of Biosciences 13(3): 305–315.
  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2): 351–358.
  • Patsalas S, Eleftheriadis T, Spaia S, Theodoroglou H, Antoniadi G, Liakopoulos  V, Passadakis P, Vayonas G, Vargemezis  V (2007) Thirty‑month follow‑up of coronary artery calcification in hemodialysis patients: different roles for inflammation and abnormal calcium‑phosphorous metabolism?. Ren Fail 29(5): 623–629.
  • Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50(2): 98–115
  • Rousou AJ, Ericsson M, Federman M, Levitsky S, McCully JD (2004) Opening of mitochondrial KATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration. Am J Physiol Heart Circ Physiol 287(5): H1967–H1976.
  • Sedlák J (1987) Effect of denervation on glutathione and oxidized glutathione in rat adrenal cortex and medulla after repeated stress. Endocrinol Exp 21(4): 263–268.
  • Shapiro BL, Feigal RJ, Lam LF (1979) Mitrochondrial NADH dehydrogenase in cystic fibrosis. Proc Natl Acad Sci U S A 76(6): 2979–2983.
  • Shono M, Houchi H, Oka M, Nakaya Y (1997) Effects of nitroprusside and nicorandil on catecholamine secretion and calcium mobilization in cultured bovine adrenal chromaffin cells. J Cardiovasc Pharmacol 30(4): 419–423.
  • Singh BK, Tripathi M, Pandey PK, Kakkar P (2011) Alteration in mitochondrial thiol enhances calcium ion dependent membrane permeability transition and dysfunction in vitro: a cross‑talk between mtThiol, Ca(2+), and ROS. Mol Cell Biochem 357(1–2): 373–385.
  • Slater EC, Bonner WD (1951) Inhibition of the succinic oxidase system by fluoride. Biochem J 49(4): l–li.
  • Subhash N, Sriram R, Kurian GA (2015) Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification. Neurochem Int 90: 193–203.
  • Tamura Y, Tanabe K, Kitagawa  W, Uchida S, Schreiner GF, Johnson RJ, Nakagawa T (2012) Nicorandil, a K(atp) channel opener, alleviates chronic renal injury by targeting podocytes and macrophages. Am J  Physiol Renal Physiol 303(3): F339–F349.
  • Teshima Y, Akao  M, Baumgartner WA, Marban E (2003) Nicorandil prevents oxidative stress‑induced apoptosis in neurons by activating mitochondrial ATP‑sensitive potassium channels. Brain Res 990(1–2): 45–50.
  • Vogels SC, Emmelot‑Vonk MH, Verhaar HJ, Koek HL (2012) The association of chronic kidney disease with brain lesions on MRI or CT: a systematic review. Maturitas 71(4): 331–336.
  • Watanabe K, Watanabe T, Nakayama M (2014) Cerebro‑renal interactions: impact of uremic toxins on cognitive function. Neurotoxicology 44: 184–193.
  • Wittig I, Karas  M, Schagger H (2007) High resolution clear native electrophoresis for in‑gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics 6(7): 1215–1225.
  • Yang Q, Zhang RZ, Yim AP, He GW (2005) Release of nitric oxide and endothelium‑derived hyperpolarizing factor (EDHF) in porcine coronary arteries exposed to hyperkalemia: effect of nicorandil. Ann Thorac Surg 79(6): 2065–2071.
  • Zhao MM, Xu MJ, Cai Y, Zhao G, Guan Y, Kong  W, Tang C, Wang X (2011) Mitochondrial reactive oxygen species promote p65 nuclear translocation mediating high‑phosphate‑induced vascular calcification in vitro and in vivo. Kidney Int 79(10): 1071–1079.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2c9dbec2-f875-410d-a4aa-001c04e69781
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.