PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 53 | 1 |

Tytuł artykułu

Chitinolytic fungi from the Birjand plain of Southern Khorasan Province in Eastern Iran

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fungal chitinases play important roles in the decomposition of wastes, mycoparasitism, and biocontrol of nematodes and plant pathogens through chitin biodegradation. This study was conducted during 2013–2017 to investigate the presence of chitinase genes in Trichoderma and Clonostachys species from the Birjand plain, and to evaluate their ability to degrade chitin. Fungal spores and soil suspensions were cultured on minimal medium containing 1% colloidal chitin from crab bodies to isolate chitinolytic fungi. Chitinolytic ability of the isolates was evaluated on this medium by staining with 1% Lugol’s iodine solution and screening for the production of a bright halo around the colonies. Fifty-two isolates capable of degrading chitin were recovered. DNA extracted from the isolates was amplified using Chit2 or DECH degenerative primers that are related to the chitinase gene, and their sequences were aligned using the NCBI GenBank database. The Chit2 and DECH primers amplified 600-bp and 250-bp fragments, respectively, and according to sequence alignment, the isolates had sequences similar to that of the chi18 chitinase genes. Morphological and molecular characterization allowed identifying the isolates as belonging to the species Trichoderma harzianum (n = 41), T. longibrachiatum (n = 1), T. virens (n = 3), T. brevicompactum (n = 1), Clonostachys rosea (n = 5), and C. rogersoniana (n = 1), some of which may potentially be used as biocontrol agents of pathogenic nematodes and fungi. This is the first report of isolation of fungi capable of chitin biodegradation from the South Khorasan Province in Eastern Iran.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

53

Numer

1

Opis fizyczny

Article 1107 [12p.], fig.,ref.

Twórcy

autor
  • Department of Plant Pathology, College of Agriculture, University of Birjand, Birjand, Iran
autor
  • Department of Plant Pathology, College of Agriculture, University of Birjand, Birjand, Iran

Bibliografia

  • 1. Requera G, Leschine SB. Chitin degradation by cellulolytic anaerobes and facultative aerobes from soils and sediments. FEMS Microbiol Lett. 2001;204(2):367–374. https://doi.org/10.1111/j.1574-6968.2001.tb10912.x
  • 2. Suzuki K, Suzuki M, Taiyoji M, Nikaidou N, Watanabe T. Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170. Biosci Biotechnol Biochem. 1998;62(1):128–135. https://doi.org/10.1271/bbb.62.128
  • 3. Muzzarelli RAA. Chitin. Kent: Elsevier; 2014.
  • 4. Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM. Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Fact. 2011;10(1):94. https://doi.org/10.1186/1475-2859-10-94
  • 5. Seidl V. Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev. 2008;22(1):36–42. https://doi.org/10.1016/j.fbr.2008.03.002
  • 6. Hamman JH. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs. 2010;8(4):1305–1322. https://doi.org/10.3390/md8041305
  • 7. Da Sacco L, Masotti A. Chitin and chitosan as multipurpose natural polymers for groundwater arsenic removal and As2O3 delivery in tumor therapy. Mar Drugs. 2010;8(5):1518–1525. https://doi.org/10.3390/md8051518
  • 8. Nam T, Park S, Lee SY, Park K, Choi K, Song IC, et al. Tumor targeting chitosan nanoparticles for dual-modality optical/MR cancer imaging. Bioconjug Chem. 2010;21(4):578–582. https://doi.org/10.1021/bc900408z
  • 9. Okazaki K, Kato F, Watanabe N, Yasuda S, Masui Y, Hayakawa S. Purification and properties of two chitinases from Streptomyces sp. J-13-3. Biosci Biotechnol Biochem. 1995;59(8):1586–1587. https://doi.org/10.1271/bbb.59.1586
  • 10. Yusupova DV, Porfir’eva OV, Sokolova RB, Ponomareva AZ, Gabdrakhmanova LA. The physiological and biochemical characteristics of the Serratia marcescens strain with enhanced chitinase activity. Biotechnologiya. 1997;2:3–9.
  • 11. Bougoure DS, Cairney JW. Chitinolytic activities of ericoid mycorrhizal and other rootassociated fungi from Epacris pulchella (Ericaceae). Mycol Res. 2006;110(3):328–334. https://doi.org/10.1016/j.mycres.2005.09.015
  • 12. Duo-Chuan L. Review of fungal chitinases. Mycopathologia. 2006;161(6):345–360. https://doi.org/10.1007/s11046-006-0024-y
  • 13. Liu Z, Gay LM, Tuveng TR, Agger JW, Westereng B, Mathiesen G, et al. Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans FGSC A4. Sci Rep. 2017;7:1746. https://doi.org/10.1038/s41598-017-02043-1
  • 14. Liu H, Bao X. Overexpression of the chitosanase gene in Fusarium solani via Agrobacterium tumefaciens-mediated transformation. Curr Microbiol. 2009;58(3):279–282. https://doi.org/10.1007/s00284-008-9334-2
  • 15. de Marco JL, Lima LHC, de Sousa MV, Felix CR. A Trichoderma harzianum chitinase destroys the cell wall of the phytopathogen Crinipellis perniciosa, the causal agent of witches’ broom disease of cocoa. World J Microbiol Biotechnol. 2000;16(4):383–386. https://doi.org/10.1023/A:1008964324425
  • 16. Karlsson M, Stenlid J. Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selection. Evolutionary Bioinformatics. 2008;4:47–60. https://doi.org/10.4137/EBO.S604
  • 17. Sampson MN, Gooday GW. Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology. 1998;144(8):2189–2194. https://doi.org/10.1099/00221287-144-8-2189
  • 18. Kellner H, Vandenbol M. Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PLoS One. 2010;5(6):e10971. https://doi.org/10.1371/journal.pone.0010971
  • 19. Klemsdal SS, Clarke JL, Hoell IA, Eijsink VG, Brurberg MB. Molecular cloning, characterization, and expression studies of a novel chitinase gene (ech30) from the mycoparasite Trichoderma atroviride strain P1. FEMS Microbiol Lett. 2006;256(2):282–289. https://doi.org/10.1111/j.1574-6968.2006.00132.x
  • 20. Gan Z, Yang J, Tao N, Liang L, Mi Q, Li J, et al. Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of rootknot nematode Meloidogyne incognita. Appl Microbiol Biotechnol. 2007;76(6):1309– 1317. https://doi.org/10.1007/s00253-007-1111-9
  • 21. Chigaleĭchik A, Pirieva D, Rydkin S. Chitinase from Serratia marcescens BKM B-851. Prikl Biokhim Mikrobiol. 1976;12(4):581–586.
  • 22. Balasubramanian R, Manocha MS. Cytosolic and membrane-bound chitinases of two mucoraceous fungi: a comparative study. Can J Microbiol. 1992;38(4):331–338. https://doi.org/10.1139/m92-056
  • 23. McNab R, Glover LA. Inhibition of Neurospora crassa cytosolic chitinase by allosamidin. FEMS Microbiol Lett. 1991;82(1):79–82. https://doi.org/10.1111/j.1574-6968.1991.tb04843.x
  • 24. Fenice M, Di Giambattista R, Raetz E, Leuba JL, Federici F. Repeated-batch and continuous production of chitinolytic enzymes by Penicillium janthinellum immobilised on chemically-modified macroporous cellulose. J Biotechnol. 1998;62(2):119–131. https://doi.org/10.1016/S0168-1656(98)00051-0
  • 25. Liu Z, Yang Q, Hu S, Zhang J, Ma J. Cloning and characterization of a novel chitinase gene (chi46) from Chaetomium globosum and identification of its biological activity. Appl Microbiol Biotechnol. 2008;80(2):241–252. https://doi.org/10.1007/s00253-008-1543-x
  • 26. Alcazar-Fuoli L, Clavaud C, Lamarre C, Aimanianda V, Seidl-Seiboth V, Mellado E, et al. Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus. Fungal Genet Biol. 2011;48(4):418–429. https://doi.org/10.1016/j.fgb.2010.12.007
  • 27. Sakurada M, Morgavi, DP, Komatani K, Tomita Y, Onodera R. Purification and characteristics of cytosolic chitinase from Piromyces communis OTS1. FEMS Microbiol Lett. 1996;137(1):75–78. https://doi.org/10.1111/j.1574-6968.1996.tb08085.x
  • 28. Pinto AS, Barreto CC, Vainstein MH, Schrank A, Ulhoa CJ. Purification and characterization of an extracellular chitinase from the entomopathogen Metarhizium anisopliae. Can J Microbiol. 1997;43(4):322–327. https://doi.org/10.1139/m97-045
  • 29. El-Katatny M, Gudelj M, Robra KH, Elnaghy M, Gübitz G. Characterization of a chitinase and an endo-ß-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol. 2001;56(1):137–143. https://doi.org/10.1007/s002530100646
  • 30. Kawachi I, Fujieda T, Ujita M, Ishii Y, Yamagishi K, Sato H, et al. Purification and properties of extracellular chitinases from the parasitic fungus Isaria japonica. J Biosci Bioeng. 2001;92(6):544–549. https://doi.org/10.1016/S1389-1723(01)80313-3
  • 31. Souza R, Gomes R, Coelho R, Alviano C, Soares R. Purification and characterization of an endochitinase produced by Colletotrichum gloeosporioides. FEMS Microbiol Lett. 2003;222(1):45–50. https://doi.org/10.1016/S0378-1097(03)00220-9
  • 32. Gkargkas K, Mamma D, Nedey G, Topakas E, Christakopoulos P, Kekos D et al. Studies on a N-acetyl-β-d-glucosaminidase produced by Fusarium oxysporum F3 grown in solid-state fermentation. Process Biochem. 2003;39:1599–1605. https://doi.org/10.1016/S0032-9592(03)00287-5
  • 33. Agrawal T, Kotasthane AS. Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. Springerplus. 2012;1(1):73. https://doi.org/10.1186/2193-1801-1-73
  • 34. Murthy N, Bleakley B. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Internet J Microbiol. 2012;10(2):e2bc3.
  • 35. Loc NH, Quang HT, Hung NB, Huy ND, Phuong TTB, Ha TTT. Trichoderma asperellum Chi42 genes encode chitinase. Mycobiology. 2011;39(3):182–186. https://doi.org/10.5941/MYCO.2011.39.3.182
  • 36. Meng H, Wang Z, Meng X, Xie L, Huang B. Cloning and expression analysis of the chitinase gene Ifu-chit2 from Isaria fumosorosea. Genet Mol Biol. 2015;38(3):381–389. https://doi.org/10.1590/S1415-475738320150003
  • 37. Griffiths LJ, Anyim M, Doffman SR, Wilks M, Millar MR, Agrawal SG. Comparison of DNA extraction methods for Aspergillus fumigatus using real-time PCR. J Med Microbiol. 2006;55(9):1187–1191. https://doi.org/10.1099/jmm.0.46510-0
  • 38. Abildgren M, Lund F, Thrane U, Elmholt S. Czapek‐Dox agar containing iprodione and dicloran as a selective medium for the isolation of Fusarium species. Lett Appl Microbiol. 1987;5(4):83–86. https://doi.org/10.1111/j.1472-765X.1987.tb01620.x
  • 39. Takahashi Y. Binding properties of alginic acid and chitin. In: Atwood JL, Davies JED, editors. Proceedings of the Fourth International Symposium on Inclusion Phenomena and the Third International Symposium on Cyclodextrins: “Inclusion phenomena in inorganic, organic, and organometallic hosts”; 1986 Jul 20–25; Lancaster, UK. Dordrecht: Springer Netherlands; 1987. p. 417–426. https://doi.org/10.1007/978-94-009-3987-5_69
  • 40. Carsolio C, Benhamou N, Haran S, Cortés C, Gutiérrez A, Chet I, et al. Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol. 1999;65(3):929–935.
  • 41. Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A. Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol. 2011;77(13):4361–4370. https://doi.org/10.1128/AEM.00129-11
  • 42. Carsolio C, Gutiérrez A, Jiménez B, van Montagu M, Herrera-Estrella A. Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci USA. 1994;91(23):10903–10907. https://doi.org/10.1073/pnas.91.23.10903
  • 43. Haran S, Schickler H, Chet I. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology. 1996;142(9):2321–2331. https://doi.org/10.1099/00221287-142-9-2321
  • 44. Kovacs K, Szakacs G, Pusztahelyi T, Pandey A. Production of chitinolytic enzymes with Trichoderma longibrachiatum IMI 92027 in solid substrate fermentation. Appl Biochem Biotechnol. 2004;118(1–3):189–204. https://doi.org/10.1385/ABAB:118:1-3:189
  • 45. Seidl V, Huemer B, Seiboth B, Kubicek CP. A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J. 2005;272(22):5923–5939. https://doi.org/10.1111/j.1742-4658.2005.04994.x
  • 46. Gan Z, Yang J, Tao N, Yu Z, Zhang KQ. Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). J Microbiol. 2007;45(5):422–430.
  • 47. Seyed Asli N, Harighi M, Zamani M, Motalebi M. Study of chitinolytic enzyme production in Trichoderma isolates. Iranian Journal of Biology. 2004;17(3):227–246.
  • 48. Shahbazi S, Askari H, Mohamadi A, Naseripour T. Investigation of mutation in chitinase gene in gamma radiated mutants of Trichoderma harzianum by STS marker. International Journal of Advanced Biological and Biomedical Research. 2014;2:1–10.
  • 49. Mostafanezhad H, Sahebani N, Abdi M, Rouhani H, Etebarian H. Biocontrol of disease and induction of certain defence compounds in tomato infected with Meloidogyne javanica by several Trichoderma isolates. Iran J Plant Pathol. 2014;50(2):177–181.
  • 50. Baharvand A, Shahbazi S, Afsharmanesh H, Ali M. Investigation of gamma irradiation on morphological characteristics and antagonist potential of Trichoderma viride against M. phaseolina. International Journal of Farming and Allied Sciences. 2014;3(11):1157–1164.
  • 51. Yazdanpanah-Samani M, Zamani MR, Motallebi M, Moghaddassi Jahromi Z. Heterologous expression of Chit36 from Trichoderma atroviride in prokaryotic system. Journal of Molecular and Cellular Research. 2015;28(3):448–457.
  • 52. Kavari M, Mahdikhani-Moghaddam E, Rouhani H. Survey on chitinase production by several isolates of Trichoderama and its biological control effect on tomato root-knot nematode Meloidogyne javanica. Journal of Plant Protection. 2015;29(1):123–133. https://doi.org/10.22067/jpp.v29i1.32918
  • 53. Ataei A, Zamani M, Motallebi M, Ziaei M, Moghaddass Jahromi Z, Jourabchi E. Antifungal study of heterologous expressed chitinase42 against Candida albicans caused agent of human infection. In: Second International and Fourteenth Iranian Genetics Congress; 2016 May 21–23; Tehran, Iran. Tehran: Iranian Genetic Society; 2016. p. 1–4.
  • 54. Cruz J, Hidalbo‐Gallego A, Lora JM, Benitez T, Pintor‐Toro JA, Llobell A. Isolation and characterization of three chitinases from Trichoderma harzianum. FEBS J. 1992;206(3):859–867. https://doi.org/10.1111/j.1432-1033.1992.tb16994.x
  • 55. Di Pietro A, Lorito M, Hayes C, Broadway R, Harman G. Endochitinase from Gliocladium virens: isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology. 1993;83(3):308–313. https://doi.org/10.1094/Phyto-83-308
  • 56. Xian H, Li J, Zhang L, Li D. Cloning and functional analysis of a novel chitinase gene Trchi1 from Trichothecium roseum. Biotechnol Lett. 2012;34(10):1921–1928. https://doi.org/10.1007/s10529-012-0989-1
  • 57. Zhang F, Ruan X, Wang X, Liu Z, Hu L, Li C. Overexpression of a chitinase gene from Trichoderma asperellum increases disease resistance in transgenic soybean. Appl Biochem Biotechnol. 2016;180(8):1542–1558. https://doi.org/10.1007/s12010-016-2186-5

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2c8f963f-2bb0-4616-8fec-9058d62ce964
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.