PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 3 |

Tytuł artykułu

The effect of silver nanoparticles on Listeria monocytogenes PCM2191 peptidoglycan metabolism and cell permeability

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Listeria monocytogenes is Gram-positive bacterial pathogen, a causative agent of food poisoning and systemic disease – listeriosis. This species is still susceptible to several conventionally used antibiotics but an increase in its resistance has been reported. For this reason the search for new, alternative therapies is an urgent task. Silver nanoparticles seem to be the promising antibacterial agent. Minimal inhibitory concentration of silver nanoparticles was determined. Sublethal concentrations were used in study of nanosilver effect on cells lysis by estimation of the number of cells surviving the treatment with 0.25 or 0.5 of minimal inhibitory concentrations of silver nanoparticles. Autolysis of isolated peptidoglycan was studied by measuring the absorbance of preparation subjected to nanosilver treatment. Silver nanoparticles effect on L. monocytogenes envelopes permeability was determined by measuring the efflux of cF, DNA and proteins. It was demonstrated that nanosilver enhanced the lysis of L. monocytogenes cells and, to the lesser extent, autolysis of isolated peptidoglycan. The increase in the efflux of carboxyfluoresceine, DNA and proteins was also noted. The obtained results allow to postulate that L. monocytogenes peptidoglycan, constituting the main component of cell wall, is the target of silver nanoparticles activity against this pathogen.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

3

Opis fizyczny

p.315-320,fig.,ref.

Twórcy

autor
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
autor
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
autor
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland

Bibliografia

  • Alleberger F, Wagner M. 2010. Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect. 16:16–23.
  • Amano K, Hayashi H, Araki Y, Ito E. 1977. The action of lysozyme on peptidoglycan with N-unsubstituted glucosamine residues. Isolation of glycan fragments and their susceptibility to lysozyme. Eur J Biochem. 76:299–307.
  • Barbuddhe SB, Chakraborty T. 2009. Listeria as an enteroinvasive gastrointestinal pathogen. Curr Top Microbiol Immunol. 337: 173–195.
  • Bierne H, Cossart P. 2007. Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev. 71:377–397.
  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK. 2009. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escheriochia coli, Pseudomonas aeruginosa and Staphylococcus aures. Lett Appl Microbiol. 48:173–179.
  • Boneca IG. 2005. The role of peptidoglycan in pathogenesis. Curr Opin Microbiol. 8:46–53.
  • Boneca IG, Dussurget O, Cabanes D, Nahori MA, Sousa S, Lecuit M, Psylinakis E, Bouriotis V, Hugot JP, Giovannini M, et al. 2007. A critical role for peptodoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci USA. 104:997–1002.
  • Chauhan N, Tyaghi AK, Kumar P, Malik A. 2016. Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Front Microbiol. 7:1748.
  • Chwalibóg A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, Grodzik M, Orlowski P, Sokolowska A. 2010. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed. 5:1085–1094.
  • Gray MJ, Freitag NE, Boor KJ. 2006. How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect Immun. 74:2505–2512.
  • Hamon MA, Ribet D, Stavru F, Cossart P. 2012. Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol. 20:360–368.
  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. 2008. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanotechnol. 4:141–144.
  • Johansen C, Verheul A, Gram L, T Gill, Abee T. 1997. Protamine-induced permeabilization of cell envelopes of Gram-positive and Gram-negative bacteria. Appl Environ Microbiol. 63:1155–1159.
  • Krawczyk-Balska A, Markiewicz Z. 2016. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics. J Appl Microbiol. 120:251–265.
  • Kurek A, Grudniak AM, Szwed M, Klicka A, Samluk Ł, Wolska KI, Janiszowska W, Popowska M. 2010. Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes. Antonie van Leeuwenhoek Int J Gen Mol Microbiol. 97:61–68.
  • Marambio-Jones C, Hoek EMV. 2010. A review of the antibacterial effects of silver nanomaterials and potential implications. J Nanoparticle Res. 12:1531–1551.
  • Markowska K, Grudniak AM, Wolska KI. 2013. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 60:523–530.
  • Markowska K, Grudniak AM, Krawczyk K, Wróbel I, Wolska KI. 2014. Modulation of antibiotic resistance and induction of stress response in Pseudomonas aeruginosa by silver nanoparticles. J Med Microbiol. 63:849–854.
  • Milczarek BE. 2015. Influence of silver nanoparticles on Listeria monocytogenes cell membranes. Ph. D. Thesis. Warsaw (Poland): University of Warsaw.
  • Morones JR, Elechigerra JL, Camacho A, Ramirez JT. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology. 16: 2346–2353.
  • Patra JK, Baek KH. 2017. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effect. Front Microbiol. 8:167.
  • Popowska M. 2004. Analysis of the peptidoglycan hydrolases of Listeria monocytogenes: multiple enzymes with multiple functions. Pol J Microbiol. 53:29–34.
  • Popowska M, Kusio M, Szymańska P, Markiewicz Z. 2009. Inactivation of the wall-associated de-N-acetylase (PgdA) of Listeria monocytogenes results in greater susceptibility of the cells to induced autolysis. J Microbiol Biotechnol. 19:932–945.
  • Rai M, Yadav A, Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 27:76–83.
  • Rice KC, Bayles KW. 2008. Molecular control of bacterial death and lysis. Microbiol Mol Biol Bev. 72:85–109.
  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian SM. 2007. Synthesis and effect of silver nanoparticles on the antibacterial activity against Staphylococcus aureus and Escherichia coli. Nanomedicine 3:168–171.
  • Singh M, Singh S, Prasada S, Gambhir IS. 2008. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomat Biostruct. 3:115–122.
  • Smith JL, McColgan C, Marmer BS. 1991. Growth temperature and the action of lysozyme on Listeria monocytogenes. J Food Sci. 56:1101–1102.
  • Stapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL. 2011. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem. 83:4453–4488.
  • Tamayo LA, Zapata PA, Vejar ND, Azócar MI, Gulppi MA, Zhou X, Thompson GE, Rabagliati FM, Páez MA. 2014 Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C Mater Biol Appl. 40:24–31.
  • Vázquez-Bolland JA, Kuhn M, Berche P, Chakraborthy T, Dominguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J. 2001. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev. 14:584–640.
  • Wolska KI, Grudniak AM, Kamiński K, Markowska K. 2015. The potential of metal nanoparticles for inhibition of bacterial biofilms. In: Rai M, Kon K, editors. Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases. Amsterdam (Netherlands): AP Elsevier. p. 119–132.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2c7efd13-eb0c-4b07-8edd-8b94c322420c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.