PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 161 | 01 |

Tytuł artykułu

Wymierne cechy elementów przewodzących w drewnie

Treść / Zawartość

Warianty tytułu

EN
Measurable traits of tracheary elements in wood

Języki publikacji

PL

Abstrakty

EN
The trade−off in case of water transport is captured in ecological theory by the safety vs. efficiency concept. As the efficiency of transport of water depends mainly on the dimensions of the conductive elements in wood, this paper presents the survey on some methods that allow to quantify the tracheids and vessels attributes including their diameter (tangential/radial, hydraulic), length as well as arrangement (axial, radial). Each trait of conductive elements is briefly described and formula for its calculation is given. Moreover, the usefulness of measurable traits for calculating the meso− and xeromorphy index is presented. Given the fact that the structure of pits and complexity of perforation plate (scalariform, ladder−like) are important factors in wood hydraulic resistance, the following parameters were additionally characterized: the pit membrane diameter, pit membrane thickness, pit chamber depth and the number of bars per perforation plate between the adjacent vessel elements.

Wydawca

-

Czasopismo

Rocznik

Tom

161

Numer

01

Opis fizyczny

s.81-88,rys.,bibliogr.

Twórcy

autor
  • Samodzielny Zakład Botaniki Leśnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
  • Polska Akademia Nauk, Ogród Botaniczny – Centrum Zachowania Różnorodności Biologicznej w Powsinie, ul.Prawdziwka 2, 02-973 Warszawa

Bibliografia

  • André J. P. 2005. Vascular Organization of Angiosperms. A New Vision. Enfield, NH: Science Publishers, Inc.
  • Baas P., Schmid R., Heuven B. J. 1986. Wood anatomy of Pinus longaeva (bristlecone pine) and the sustained length-on-age increase of its tracheids. IAWA Bull. 7: 221-228.
  • Bannan M. W. 1964. Tracheid size and anticlinal divisions in the cambium of Pseudotsuga. Can. J. Bot. 42: 603-631.
  • Bosshard H. H., Kucera L. 1973. Die vernetzung des gefäßsystems in Fagus sylvatica L. Holz Roh. Werkst. 31: 437-448.
  • Bouche P. S., Larter M., Domec J. Ch., Burlett R., Gasson P., Jansen S., Delzon S. 2014. A broad survey of hydraulic and mechanical safety in the xylem of conifers. J. Exp. Bot. 65: 4419-4431.
  • Brodersen C. R., Lee E. F., Choat B., Jansen S., Phillips R. J., Shackel K. A., McElrone A. J., Matthews M. A. 2011. Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. New Phytol. 191: 1168-1179.
  • Carlquist S. 1977. Ecological factors in wood evolution: a floristic approach. Am. J. Bot. 64: 887-896.
  • Carlquist S. 2001. Comparative wood anatomy – systematic, ecological and evolutionary aspects of dicotyledon wood. 2nd Edn., Berlin Springer-Verlag.
  • Choat B., Cobb A., Jansen S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol. 177: 608-626.
  • Choat B., Jansen S., Zieniecki M. A., Smets E., Holbrook M. 2004. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. J. Exp. Bot. 55: 1569-1575.
  • Christman M. A., Sperry J. S., Smith D. 2012. Rare pits, large vessels and extreme vulnerability to cavitation in a ring--porous tree species. New Phytol. 193: 713-720.
  • Cohen S., Bennink J., Tyree M. T. 2003. Air method measurements of apple vessel length distributions with improved apparatus and theory. J. Exp. Bot. 54: 1889-1897.
  • Davis S. D., Sperry J. S., Hacke U. 1999. The relationship between xylem conduit diameter and cavitation caused by freezing. Am. J. Bot. 86: 1367-1372.
  • Delzon S., Douthe C., Sala A., Cochard H. 2010. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant, Cell & Environ. 33: 2101-2111.
  • De Micco V., Aronne G. 2012. Morpho-anatomical traits for plant adaptation to drought. W: Aroca R. [red.]. Plant responses to drought stress: from morphological to molecular features. Springer-Verlag, Berlin Heidelberg. 37-62.
  • Dute R. R., Martin A. L., Jansen S. 2004. Intervascular pit membranes with tori in wood of Planera aquatica J.F.Gmel. J. Ala. Acad. Sci. 75: 7-21.
  • Dute R. R., Rushing A. E. 1987. Pit pairs in the wood of Osmanthus americanus (Oleaceae). IAWA Bull. 8: 237-244.
  • Dute R. R., Rushing A. E., Freeman J. D. 1992. Survey of intervessel pit membrane structure in Daphne species. IAWA Bull. 13: 113-123.
  • Ewers F. W., Fisher J. B. 1989. Techniques for measuring vessel lengths and diameters in stems of woody plants. Am. J. Bot. 76: 645-656.
  • Gonzales I. G., Eckstein D. 2003. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol. 23: 497-504.
  • Greenidge K. N. H. 1952. An approach to the study of vessel length in hardwood species. Am. J. Bot. 39: 570-574.
  • Hacke U. G., Jansen S. 2009. Embolism resistance of three boreal conifer species varies with pit structure. New Phytol. 182: 675-686.
  • Hacke U. G., Sperry J. S., Feild T. S., Sano Y., Sikkema E. H., Pittermann J. 2007. Water transport in vesselless angiosperms: conducting efficiency and cavitation safety. Int. J. Plant Sci. 168: 1113-1126.
  • Hacke U. G., Spicer R., Schreiber S. G., Plavcova L. 2016. An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environ. DOI: 10.1111/pce.12777.
  • Huggett B., Tomlinson P. 2010. Aspects of vessel dimensions in the aerial roots of epiphytic Araceae. Int. J. Plant Sci. 171: 362-369.
  • Jansen S., Choat B., Pletsers A. 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am. J. Bot. 96: 409-419.
  • Jansen S., Choat B., Vinckier S., Lens F., Schols P., Smets E. 2004. Intervascular pit membranes with a torus in the wood of Ulmus (Umlaceae) and related genera. New Phytol. 163: 51-59.
  • Kanai Y., Fujita M., Takabe K. 1996. Vessel network tracing by wire insertion and pigment injection. Bull. Kyoto Univ. Forest 68: 127-136.
  • Ladell J. L. 1959. A new method of measuring tracheid length. Forestry 32: 124-125.
  • Lens F., Sperry J. S., Christman M. A., Choat B., Rabaey D., Janses S. 2011. Testing hypothesis that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 190: 709-723.
  • Lewis A. 1992. Measuring the hydraulic diameter of a pore or conduit. Am. J. Bot. 79: 1158-1161.
  • López J., del Valle J. I., Giraldo J. A. 2014. Flood-promoted vessel formation in Prioria copaifera trees in the Darien Gap, Colombia. Tree Physiol. DOI: 10.1093/treephys/tpu077.
  • Martínez-Vilalta J., Mencuccini M., Alvarez X., Camacho J., Loepfe L., Pińol J. 2012. Spatial distribution and packing of xylem conduits. Am. J. Bot. 99: 1-8.
  • Medeiros J. S., Pockman W. T. 2014. Freezing regime and trade-offs with water transport efficiency generate variation in xylem structure across diploid populations of Larrea sp. Am. J. Bot. 101: 598-607.
  • Middleton T. M. 1989. Modification of the latex paint infusion technique for the determination of vessel length in hardwoods. Wood Sci. Technol. 302: 299-302.
  • Pockman W. T., Sperry J. S. 2000. Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am. J. Bot. 87: 1287-1299.
  • Rancić D., Quarrie S. P., Radosević R., Terzić M., Pećinar I., Stikić R., Jansen S. 2010. The application of various anatomical techniques for studying the hydraulic network in tomato fruit pedicels. Protoplasma 246: 25-31. DOI: 10.1007/s00709-010-0115-y.
  • Scholz A., Klepsch M., Karimi Z., Jansen S. 2013. How to quantify conduits in wood. Front. Plant Sci. 4: 56.
  • Schreiber S. G., Hacke U. G., Hamann A., Thomas B. R. 2015. Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen. New Phytol. 190: 150-160.
  • Skene D. S., Balodis V. 1968. A study of vessel length in Eucalyptus obliqua L’Herit. J. Exp. Bot. 19: 825-830.
  • Sperry J. S. 2003. Evolution of water transport and xylem structure. Int. J. Plant Sci. 164: 115-127.
  • Sperry J. S., Hacke U. G., Wheeler J. K. 2005. Comparative analysis of end wall resistivity in xylem conduits. Plant Cell Environ. 28: 456-465.
  • Sperry J. S., Nichols K. L., Sullivan J. E. M. 1994. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of Northern Utah and Interior Alaska. Ecology 75: 1736-1752.
  • Sperry J. S., Sullivan J. E. M. 1992. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol. 100: 605-613.
  • Sperry J. S., Tyree M. T. 1990. Water stress induced xylem embolism in three species of conifers. Plant Cell Environ. 13: 427-436.
  • Thorne E. T., Young B. M., Young G. M., Stevenson J. F., Labavitch J. M., Matthews M. A., Rost T. L. 2006. The structure of xylem vessels in grapevine and a possible passive mechanism for the systemic spread of bacterial disease. Am. J. Bot. 93: 497-504.
  • Tixier A., Harbette S., Jansen S., Capron M., Tordjeman P., Cochard P., Badel E. 2014. Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms. Ann. Bot. 114: 325-334.
  • Tulik M. 2006. Różnorodność form w rzędach elementów trachealnych komórek roślinnych. Sylwan 150 (3): 31-38.
  • Tulik M. 2014. The anatomical traits of trunk wood and their relevance to oak (Quercus robur L.) vitality. Eur. J. Forest Res. 133 (5): 845-855.
  • Tulik M., Bijak S. 2016. Are climatic factors responsible for the process of oak decline in Poland? Dendrochronologia 38: 18-25.
  • Tyree M. T., Zimmermann M. H. 2002. Xylem Structure and the Ascent of Sap. 2nd Edn. Berlin, Heidelberg, NewYork, Springer-Verlag.
  • Wheeler E. A. 1983. Intervascular pit membranes in Ulmus and Celtis native to the United States. IAWA Bull. 4: 79-88.
  • Wilkins A. P., Bamber R. K. 1983. A comparison between Ladell’s wood section method and the macerated wood method for tracheid length determination. IAWA J. 4: 245-247.
  • Yaman B. 2008. Variation in quantitative vessel element features of Juglans regia wood in the western black sea region of Turkey. Agrociencia 42: 357-365.
  • Verheyden A., Ridder F. D., Schmitz N., Beeckman H., Koedam N. 2005. High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate. New Phytologist 167: 425-435.
  • Zimmermann M. H. 1983. Xylem structure and the ascent of sap. Berlin, Springer-Verlag.
  • Zimmermann M. H., Jeje A. A. 1981. Vessel-length distribution in stems of some American woody plants. Can. J. Bot. 59: 1882-1892.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2c67f93d-47f0-4102-8617-2882aafc52f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.