PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 63 | 2 |

Tytuł artykułu

Microarray analysis of retroviral restriction factor gene expression in response to porcine endogenous retrovirus infection

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Microarray analysis has been used for screening genes involved in specific biological processes. Many studies have shown that restriction factors may play an important role in xenotransplantation safety, but it is still unclear whether porcine endogenous retroviruses (PERVs) may be inhibited by these factors. Therefore, the present study focused on the microarray analysis retroviral restriction factors gene expression in normal human dermal fibroblasts (NHDFs) in response to PERVs. PERV infectivity was analyzed using a co-culture system of NHDFs and porcine kidney epithelial cells (PK15 cell line). Detection of the copy number of PERV A, PERV B DNA and PERV A, PERV B RNA was performed using real-time Q-PCR and QRT-PCR. The expression of retroviral restriction factor genes was compared between PERV-infected and uninfected NHDF cells using oligonucleotide microarray. The up-regulated transcripts were recorded for two differentially expressed genes (TRIM1, TRIM16) with the use of GeneSpring platform and Significance Analysis of Microarrays. In conclusion, our results suggest that the TRIM family may play an important role in innate immunity to PERV infection. These results can allow a better understanding of restriction mechanism of PERV infection and probably design molecularly targeted therapies in the future. Moreover, knowledge of retroviral restriction factor gene expression in human cells may help to uncover strategies for determining their exact function. Microarray analyses seem to be promising in biological and biomedical studies, however, these results should be further confirmed by research conducted at the protein level.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

2

Opis fizyczny

p.183-190,fig.,ref.

Twórcy

autor
  • Department of Molecular Biology, School of Pharmacy with the Division of Medical Analytics, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
autor
  • Department of Molecular Biology, School of Pharmacy with the Division of Medical Analytics, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
  • Department of Molecular Biology, School of Pharmacy with the Division of Medical Analytics, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
autor
  • Department of Molecular Biology, School of Pharmacy with the Division of Medical Analytics, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
  • Department of Molecular Biology, School of Pharmacy with the Division of Medical Analytics, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
autor
  • Department of Molecular Biology, School of Pharmacy with the Division of Medical Analytics, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
autor
  • Department of Molecular Biology, School of Pharmacy with the Division of Medical Analytics, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
autor
  • Department of Molecular Biology, School of Pharmacy with the Division of Medical Analytics, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland

Bibliografia

  • Abudu A., A. Takaori-Kondo, T. Izumi, K. Shirakawa, M. Kobayashi, A. Sasada, K. Fukunaga and T. Uchiyama. 2006. Murine retrovirus escapes from murine APOBEC3 via two distinct novel mechanisms. Curr. Biol. 16 (15): 1565–1570.
  • Bell J.L., A. Malyukova, J.K. Holien, J. Koach, M.W. Parker,M. Kavallaris, G.M. Marshall and B.B. Cheung. 2012. TRIM16 acts as an E3 ubiquitin ligase and can heterodimerize with other TRIM family members. PLoS One 7 (5): e37470.
  • Blusch J.H., C. Patience, Y. Takeuchi, C. Templin, C. Roos, K. Von Der Helm, G. Steinhoff and U. Martin. 2000. Infection of Nonhuman Primate Cells by Pig Endogenous Retrovirus. J. Virol. 74: 7687–7690.
  • Bösch S., C. Arnauld and A. Jestin. 2000. Study of full-length porcine endogenous retrovirus genomes with envelope gene polymorphism in a specific-pathogen-free Large White swine herd. J. Virol. 74(18): 8575–8581.
  • Chuaqui R.F., R.F. Bonner, C.J. Best, J.W. Gillespie, M.J. Flaig, S.M. Hewitt, J.L. Phillips, D.B. Krizman, M.A. Tangrea, M. Ahram and others. 2002. Post-analysis follow-up and validation of microarray experiments. Nat. Genet. 32: 509–514.
  • Cyganek-Niemiec A., B. Strzalka-Mrozik, L. Pawlus-Lachecka, J. Wszolek, J. Adamska, J. Kudrjavtseva, I. Zhuravleva, M. Kimsa, H. Okla, M. Kimsa and others. 2012. Degradation effect of diepoxide fixation on porcine endogenous retrovirus DNA in heart valves: molecular aspects. Int. J. Artif. Organs. 35 (1): 25–33.
  • Denner J., H.J. Schuurman and C. Patience. 2009. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes-Chapter 5: Strategies to prevent transmission of porcine endogenous retroviruses. Xenotransplantation 16: 239–248.
  • Di Nicuolo G., A. D’Alessandro, B. Andria, V. Scuderi, M. Scognamiglio, A. Tammaro, A. Mancini, S. Cozzolino, E. Di Florio, A. Bracco and others. 2010. Long-term absence of porcine endogenous retrovirus infection in chronically immunosuppressed patients after treatment with the porcine cell-based Academic Medical Center bioartificial liver. Xenotransplantation 17 (6): 431–439.
  • Dinsmore J.H., C. Manhart, R. Raineri, D.B. Jacoby and A. Moore. 2000. No evidence for infection of human cells with porcine endogenous retrovirus (PERV) after exposure to porcine fetal neuronal cells. Transplantation 70 (9): 1382–1389
  • Dumeaux V., Johansen J., Børresen-Dale A.L. and E. Lund. 2006. Gene expression profiling of whole-blood samples from women exposed to hormone replacement therapy. Mol. Cancer. Ther. 5 (4): 868–876.
  • Elliott R.B., L. Escobar, O. Garkavenko, M.C. Croxson, B.A. Schroe-der, M. McGregor, G. Ferguson, N. Beckman and S. Ferguson. 2000. No evidence of infection with porcine endogenous retrovirus in recipients of encapsulated porcine islet xenografts. Cell. Transplant. 9 (6): 895–901.
  • Esnault C., J. Millet, O. Schwartz and T. Heidmann. 2006. Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucleic. Acids. Res. 34 (5): 1522–1531.
  • Gee P., Y. Ando, H. Kitayama, S.P. Yamamoto, Y. Kanemura,H. Ebina, Y. Kawaguchi and Y. Koyanagi. 2011. APOBEC1-mediated editing and attenuation of herpes simplex virus 1 DNA indicate that neurons have an antiviral role during herpes simplex encephalitis. J. Virol. 85(19): 9726–9736.
  • Jeanmougin M., A. de Reynies, L. Marisa, C. Paccard, G. Nuel and M. Guedj. 2010. Should we abandon the t-test in the analysis of gene expression microarray data: a comparison of variance modeling strategies. PLoS One 5 (9): e12336.
  • Jónsson S.R., R.S. LaRue, M.D. Stenglein, S.C. Fahrenkrug,V. Andrésdóttir and R.S. Harris. 2007. The restriction of zoonotic PERV transmission by human APOBEC3G. PLoS One 2 (9): e893.
  • Kajaste-Rudnitski A., C. Pultrone, F. Marzetta, S. Ghezzi,T. Coradin and E. Vicenzi. 2010. Restriction factors of retroviral replication: the example of Tripartite Motif (TRIM) protein 5 alpha and 22. Amino Acids. 39 (1): 1–9.
  • Kimsa M., B. Strzalka-Mrozik, M. Kimsa, J. Adamska, J. Gola,K. Lopata and U. Mazurek. 2012. Quantitative estimation of porcine endogenous retrovirus release from PK15 cells. Pol. J. Microbiol. 61: 211–215.
  • Laguette N. and M. Benkirane. 2012. How SAMHD1 changes our view of viral restriction. Trends Immunol. 33 (1): 26–33.
  • Lau P.P., H.J. Zhu, M. Nakamuta and L. Chan. 1997. Cloning of an Apobec-1-binding protein that also interacts with apolipoprotein B mRNA and evidence for its involvement in RNA editing. J. Biol. Chem. 272 (3): 1452–1455.
  • Li Z., Y. Ping, L. Shengfu, Z. Yangzhi, C. Jingqiu, C.L. Youping and B. Hong. 2006. Variation of host cell tropism of porcine endogenous retroviruses expressed in chinese Banna minipig inbred. Intervirology 49: 185–191.
  • Liu G., Z. Li, M. Pan, M. Ge, Y. Wang and Y. Gao. 2011. Genetic prevalence of porcine endogenous retrovirus in Chinese experimental miniature pigs. Transplant Proc. 43: 2762– 2769.
  • Luo Y., L. Lin, L. Bolund, T.G. Jensen, C.B. Sørensen. 2012. Genetically modified pigs for biomedical research. J. Inherit. Metab. Dis. 35 (4): 695–713.
  • Machnik G., D. Sypniewski, S. Gałka, T. Loch, D. Sołtysik,D. Błaszczyk and I. Bednarek. 2010. Changes of syncytin I expression level in HEK293 cells line after infection buy porcine endogenous retroviruses (PERV) (in Polish). Farm. Przegl. Nauk. 12: 14–20.
  • McCarthy D.J. and G.K. Smyth. 2009. Testing significance relativeto a fold-change threshold is a TREAT. Bioinformatics 25 (6): 765–71.
  • Meije Y., R.R. Tönjes and J.A. Fishman. 2010. Retroviral restriction factors and infectious risk in xenotransplantation. Am. J. Transplant. 10 (7): 1511–6.
  • Michaels M. 1998. Xenozoonoses and the xenotransplant recipient. Ann. NY Acad. Sci. 862: 100–104.
  • Moalic Y., Y. Blanchard, H. Félix and A. Jestin. 2006. Porcine endogenous retrovirus integration sites in the human genome: features in common with those of murine leukemia virus. J. Virol. 80 (22): 10980–10988.
  • Moon H.J., S.J. Park, H.K. Kim, S.K. Ann, S. Rho, H.O. Keum and B.K. Park. 2010. Simultaneous detection and subtyping of porcine endogenous retroviruses proviral DNA using the dual priming oligonucleotide system. J. Vet. Sci. 11 (3): 269–271.
  • Mous K., W. Jennes, M. Camara, M. Seydi, G. Daneau, S. Mboup, L. Kestens and X. Van Ostade. 2012. Expression analysis of LEDGF/p75, APOBEC3G, TRIM5alpha, and tetherin in a Senegalese cohort of HIV-1-exposed seronegative individuals. PLoS One 7 (3): e33934.
  • Nguyen D.V., A.B. Arpat, N. Wang and R.J. Carroll. 2002. DNA microarray experiments: biological and technological aspects. Biometrics 58 (4): 701–717.
  • Pineda M.J., B.R. Orton and J. Overbaugh. 2007. A TRIM5alpha-independent post-entry restriction to HIV-1 infection of macaque cells that is dependent on the path of entry. Virology 363 (2): 310–318.
  • Scobie L. and Y. Takeuchi. 2009. Porcine endogenous retrovirus and other viruses in xenotransplantation. Curr Opin Organ Transplant. 14 (2): 175–179.
  • Slonim D.K. and I. Yanai. 2009. Getting started in gene expression microarray analysis. PLoS Comput. Biol. 5 (10): e1000543.
  • Strzalka-Mrozik B., A. Stanik-Walentek, M. Kapral, M. Kowalczyk, J. Adamska, J. Gola and U. Mazurek. 2010. Differential expression of transforming growth factor-β isoforms in bullous keratopathy corneas. Mol. Vis. 16: 161–166.
  • Takeuchi Y. and R.A. Weiss. 2000. Xenotransplantation: reappraising the risk of retroviral zoonosis. Curr. Opin. Immunol. 12(5): 504–507.
  • Takeuchi Y., C. Patience, S. Magre, R.A. Weiss, P.T. Banerjee,P. Le Tissier and J.P. Stoye. 1998. Host Range and Interference Studies of Three Classes of Pig Endogenous Retrovirus. J. Virol. 72: 9986–9991.
  • Uchil P.D., B.D. Quinlan, W.T. Chan, J.M. Luna and W. Mothes. 2008. TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog. 4 (2): e16.
  • Uchil P.D., B.D. Quinlan, W.T. Chan, J.M. Luna and W. Mothes. 2008. TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog. 4 (2): e16.
  • Verducci J.S., V.F. Melfi, S. Lin, Z. Wang, S. Roy and C.K. Sen. 2006. Microarray analysis of gene expression: considerations in data mining and statistical treatment. Physiol. Genomics. 25 (3): 355–363.
  • Wichroski M.J., G.B. Robb and T.M. Rana. 2006. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog. 2 (5): e41.
  • Wolf D. and S.P. Goff. 2008. Host restriction factors blocking retroviral replication. Annu. Rev. Genet. 42: 143–163.
  • Yap M.W., S. Nisole, C. Lynch and J.P. Stoye. 2004. Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc. Natl. Acad. Sci. USA 101 (29): 10786–10791.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2c2aa0b4-ab66-4a8c-8e20-216fa2813a7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.