EN
Water stress is a major limitation for plant survival and growth. Several physiological and antioxidative mechanisms are involved in the adaptation to water stress by plants. In this experiment, tea cultivars (TV-1, TV-20, TV-29 and TV-30) were subjected to drought stress by withholding water for 20 days followed by rehydration. An experiment was thus performed to test and compare the effect of dehydration and rehydration in growing seedlings of tea cultivars. The effect of drought stress and post stress rehydration was measured by studying the reactive oxygen species (ROS) metabolism in tea. Water stress decreased nonenzymic antioxidants like ascorbate and glutathione contents with differential responses of enzymic antioxidants in selected clones of Camellia sinensis indicating an oxidative stress situation. This was also apparent from increased lipid peroxidation, O2⁻ and H2O2 content in water stress imposed plants. But the oxidative damage was not permanent as the plants recovered after rehydration. Comparatively less decrease in antioxidants, higher activities of POX, GR, CAT with higher phenolic contents suggested better drought tolerance of TV-1, which was also visible from the recovery study, where it showed lower ROS level and higher recovery of antioxidant property in response to rehydration, thus proving its better recovery potential. On the other hand, highest H2O2 and lipid peroxidation with decrease in phenolic content during stress in TV-29 suggested its sensitivity to drought. The antioxidant efficiency and biochemical tolerance in response to drought stress thus observed in the tested clones of Camellia sinensis can be arranged in the order as TV-30>TV-1>TV-29>TV-20.