PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 17 | 3 |

Tytuł artykułu

Two fundamentals of mammalian defense in fungal infections: Endothermy and innate antifungal immunity

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The environment of animals is inhabited by enormous fungal species, but only a few hundreds are pathogenic for mammals. Most of potentially pathogenic fungal species, excluding dermatophytes, seldom cause the disease in immunocompetent hosts. Data from literature indicate, that an immune system and endothermy are foundations for this mammalian relative resistance to fungal systemic infections. Stable and high temperature of the body restricts invasion and growth of potentially pathogenic fungi. Together with elevated metabolism it supports the effectiveness of mammalian immunity. The innate immunity is assigned to prevent the invasion of various microbes (including fungi) to the hosts’ organism. It consists of cellular receptors and several humoral factors as the Antimicrobial Peptides. If the physical barriers fail in stopping the invader, it is recognized as “alien” by multiple Pattern Recognition Receptors (PRRs) like Toll Like Receptors (TLRs) expressed by cells of innate immunity and/ or C-type lectins. At the same time innate inflammation begins and the complement cascade is activated. These mechanisms are able to stop and clear some fungal infections. During existing infection the adaptive immunity is induced. This review aims to show the role of mammalian endothermy and to point the most important elements of innate antifungal immunity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

3

Opis fizyczny

p.555-567,ref.

Twórcy

  • Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland

Bibliografia

  • Andrianopoulos A (2002) Control of morphogenesis in the human fungal pathogen Penicillium marneffei. Int J Med Microbiol 292: 331-347.
  • Batura-Gabryel H (2003) Grzybice głębokie u chorych na AIDS. Mikologia Lekarska 10: 319-324.
  • Bergman A, Casadevall A (2010) Mammalian endothermy optimally restricts fungi and metabolic costs. MBio DOI:10.1128/mBio.00212-10
  • Blackwell M (2011) The fungi: 1,2,3...5.1 million species? Am J Bot 98: 426-438.
  • Blanco JL, Garcia ME (2008) Immune response to fungal infections. Vet Immunol Immunopathol 125: 47-70.
  • Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JT, Darling SR, Gargas A, Niver R, Okoniewski JC, Rudd RJ, Stone WB (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323: 227.
  • Bourgeois C, Kuchler K (2012) Fungal pathogens-a sweet and sour treat for toll-like receptors. Front Cell Infect Microbiol 2: 142.
  • Bourgeois C, Majer O, Frohner IE, Tierney L, Kuchler K (2010) Fungal attacks on mammalian hosts: pathogen elimination requires sensing and tasting. Curr Opin Microbiol 13: 401-408.
  • Brandenbug LO, Merres J, Albrecht LJ, Varoga D, Pufe T (2012) Antimicrobial peptides: mulitifunctional drugs for different applications. Polymers 4: 539-560.
  • Brown GD (2011) Innate antifungal immunity: the key role of phagocytes. Annu Rev Immunol 29: 1-21.
  • Bruhn O, Paul S, Tetens J, Thaller G (2009) The repertoire of equine intestinal h-defensins. BMC Genomics 10: 631.
  • Casadevall A (1995) Antibody immunity and invasive fungal infections. Infect Immun 63: 4211-4218.
  • Casadevall A (2005) Fungal virulence, vertebrate endothermy and dinosaur extinction: is there a connection? Fungal Genet Biol 42: 98-106.
  • Casadevall A (2007) Determinants of virulence in the pathogenic fungi. Fungal Biol Rev 21: 130-132.
  • Casadevall A (2012) Fungi and the rise of mammals. PLoS Pathog. 8: e1002808.
  • Cooney NM, Klein BS (2008) Fungal adaptation to the mammalian host: it is a new world, after all. Curr Opin Microbiol 11: 511-516.
  • Cooper CR Jr, Haycocks NG (2000) Penicillium marneffei: an insurgent species among the penicillia. J Eukaryot Microbiol 47: 24-28.
  • Cunliffe RN (2003) Alfa-defensins in the gastrointestinal tract. Mol Immunol 40: 463-467.
  • Dworecka-Kaszak B (2008) Mikologia Weterynaryjna. Wydawnictwo SGGW, Warszawa Faisal M, Elsayed E, Fitzgerald SD, Silva V, Mendoza L (2007) Outbreaks of phaeohyphomycosis in the chinook salmon (Oncorhynchus tshawytscha) caused by Phoma herbarum. Mycopathologia 163: 41-48
  • Fonseca FL, Nohara LL, Cordero RJ, Frases S, Casadevall A, Almeida IC, Nimrichter L, Rodrigues ML (2010) Immunomodulatory effects of serotype B glucuronoxylomannan from Cryptococcus gattii correlate with polysaccharide diameter. Infect Immun 78: 3861-3870.
  • Cao H, Zheng W, Xu J, Ou R, He S, Yang X (2012) Identification of an isolate of Saprolegnia ferax as the causal agent of saprolegniosis of Yellow catfish (Pelteobagrus fulvidraco) eggs. Vet Res Commun 36: 239-244.
  • Hillenius WJ, Ruben JA (2004) The evolution of endothermy in terrestrial vertebrates: Who? When? Why? Physiol Biochem Zool 77: 1019-1042.
  • Hussein MM, Hatai K, Nomura T (2001) Saprolegniosis in salmonids and their eggs in Japan. J Wildl Dis 37: 204-207.
  • Jouault T, El Abed-El Behi M, Marttnez-Esparza M, Breuilh L, Trinel PA, Chamaillard M, Trottein F, Poulain D (2006) Specific recognition of Candida albicans by macrophages requires Galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol 177: 4679-4687.
  • Krutkiewicz A (2010) Czynniki chorobotwórczości Candida albicans Mikologia Lek 17: 134-137.
  • LeibundGut-Landmann S, Wuthrich M, Hohl TM (2012) Immunity to fungi. Curr Opin Immunol 24: 449-458.
  • Long KH, Gomez FJ, Morris RE, Newman SL (2003) Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages. J Immunol 170: 487-494.
  • Mak P, Wójcik K, Thorgersen IB, Dubin A (1996) Isolation, antimicrobial activities, and primary structures of hamster neutrophil defensins. Infect Immun 64: 4444-4449
  • Marshal SH, Arenas G (2003) Antimicrobial peptides: a natural alternative to chemical antibiotics and a potential for applied biotechnology. Electron J Biotechn 6: 271-284.
  • McEwan NA (2001) Malassezia and Candida infections in bull terriers with lethal acrodermatitis. J Small Anim Pract 42: 291-297.
  • Meteyer CU, Valent M, Kashmer J, Buckles EL, Lorch JM, Blehert DS, Lollar A, Berndt D, Wheeler E, White CL, Ballmann AE (2011) Recovery of little brown bats (Myotis lucifugus) from natural infection with Geomyces destructans, white-nose syndrome. J Wildl Dis 47: 618-626.
  • Monod M, Capoccia S, Lechenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292: 405-419.
  • Nawrot U, Karpiewska A (2002) Patogeneza zakażeń wywołanych przez Candida albicans. Mikologia Lek 9: 137-143
  • Netea MG, Ferweda G, Van der Graaf CA, Van der Meer JW, Kullberg BJ (2006a) Recognition of fungal pathogens by toll-like receptors. Curr Pharm Des 12: 4195-4201.
  • Netea MG, Gow NAR, Munro CA, Bates S, Collins C, Ferwerda G, Hobson RP, Bertram G, Hughes B, Jansen T, L, Buurman ET, Gijzen K, Williams DL, Torensma R, McKinnon A, MacCallum DM, Odds FC, Van der Meer JWM, Brown AJP, Kullberg BJ (2006b) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116:1642-1650.
  • Netea MG, Warris A, Van der Meer JW, Fenton MJ, Verver- Janssen TJ, Jacobs LE, Andresen T, Verweij PE, Kullberg BJ (2003) Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis 188: 320-326.
  • Nguyen TX, Cole AM, Lehrer I (2003) Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides 24: 1647-1654.
  • Pasqualotto AC, Rosa DD, Medeiros LR, Severo LC (2006) Candidaemia and cancer: patients are not all the same. BMC Infect Dis 6: 50-56.
  • Perryman LE (2004) Molecular pathology of severe combined immunodeficiency in mice, horses and dogs. Vet Pathol 41: 95-100.
  • Ramkumar TP, Hammache D, Stahl PD (2003) The macrophage mannose receptor and innate immunity. In: Ezekowitz RAB, Hoffmann JA (eds) Innate immunity. Humana Press, Totowa, pp 191-204.
  • Robert VA, Casadevall A (2009) Vertebrate endothermy restricts most fungi as potential pathogens. J Infect Dis 200: 1623-1626.
  • Rollins-Smith LA, Ramsey JP, Pask JD, Reinert LK, Woodhams DC (2011) Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr Comp Biol 51: 552-562.
  • Rubino I, Coste A, Le Roy D, Roger T, Jaton K, Boeckh M, Monod M, Latgé JP, Calandra T, Bochud PY (2012) Species-specific recognition of Aspergillus fumigatus by Toll-like receptor 1 and Toll-like receptor 6. J Infect Dis 205: 944-954.
  • Santamaria R, Rizzetto L, Bromley M, Zelante T, Lee W, Cavalieri D, Romani L, Miller B, Gut I, Santos M, Pierre P, Bowyer P, Kapushesky M (2011) Systems biology of infectious diseases: a focus on fungal infections. Immunobiology 216: 1212-1227.
  • Selsted ME (2004). Theta-defensins: cyclic antimicrobial peptides produced by binary ligation of truncated alpha- defensins. Curr Protein Pept Sci 5: 365-371.
  • Selsted ME, Harwig SS (1987) Purification, primary structure, and antimicrobial activities of a guinea pig neutrophil defensin. Infect Immun 55: 2281-2286.
  • Shoham S, Huang C, Chen JM, Golenbock DT, Levitz SM (2001) Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol 166: 4620-4626.
  • Skerratt FL, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of Chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4: 125-134.
  • Sobol G, Mizia-Maziarz A, Musioł K, Krupa M, Stolpa W, Szyszka A, Walczak E, Kuleta-Bosak E, Woś H (2009) Inwazyjne zakażenia grzybicze u dzieci z chorobą nowotworową z uwzględnieniem doświadczeń własnych. Mikologia Lekarska 16: 67-71.
  • Sorgi CA, Secatto A, Fontanari C, Turato WM, Belangér C, de Medeiros AI, Kashima S, Marleau S, Covas DT, Bozza PT, Faccioli LH (2009) Histoplasma capsulatum cell wall {beta}-glucan induces lipid body formation through CD18, TLR2, and dectin-1 receptors: correlation with leukotriene B4 generation and role in HIV-1 infection. J Immunol 182: 4025-4035.
  • Steenbergen JN, Casadevall A (2003) The origin and maintenance of virulence for the human pathogenic fungus Cryptococcus neoformans. Microbes Infect 5: 667-675 .
  • Taylor LH, Latham SM, Woolhouse ME (2001). Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356: 983-989
  • Tizard IR (2004) Veterinary Immunology: an Introduction. 7th ed., Sounders, Philadelphia.
  • Viriyakosol S, Fierer J, Brown GD, Kirkland TN (2005) Innate immunity to the pathogenic fungus Coccidioides posadasii is dependent on Toll-like receptor 2 and Dectin-1. Infect Immun 73: 1553-1560.
  • Weinberg A, Krisanaprakornkit S, Dale BA (1998) Epithelial antimicrobial peptides: review and significance for oral applications. Crit Rev Oral Biol Med 9: 399-414.
  • Zelante T, Montagnoli C, Bozza S, Gaziano R, Bellocchio S, Bonifazi P, Moretti S, Fallarino F, Puccetti P, Romani L (2007) Receptors and pathways in innate antifungal immunity: the implication for tolerance and immunity to fungi. Adv Exp Med Biol 590: 209-221.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2b909e07-b173-4e8f-be80-476082a90178
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.