Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 65 | 3 |
Tytuł artykułu

Physiological properties of dietary ellagitannin-rich preparations obtained from strawberry pomace using different extraction methods

Treść / Zawartość
Warianty tytułu
Języki publikacji
The objective of this study was to establish the composition of strawberry preparations rich in ellagitannins obtained using water or acetone extraction (EF and EP preparation, respectively). Then, biological effect of these extracts was assessed in 4-wk nutritional experiment on Wistar rats. The preparations were applied in cholesterol-containing diets that had equal content of ellagitannins (0.03%). To measure animals response, parameters describing the caecal fermentation (ammonia and short-chain fatty acid concentrations, bacterial enzymes activity), blood serum lipoprotein profile, and TBARS content in selected tissues (heart, liver, kidney) were assessed. Apart from polyphenols, including ellagitannins (7.8 and 7.1%, respectively), the EF preparation contained high quantities of soluble dietary fibre and other carbohydrates (33.3 and 38.9%, respectively), whereas the EP preparation was characterised by 58.9% content of ellagitannins, no dietary fibre and a high content of proanthocyanidins (16.9%). In comparison to EF group, the dietary treatment with EP had a stronger effect on caecal environment as manifested by decreased digesta bulk, ß-glucuronidase activity and total short-chain fatty acid concentration (P<0.05 vs. group C without supplementation). Both preparations lowered lipaemia and glycaemia. It could be concluded that more efficient acetone extraction of strawberry pomace increased the content of both ellagitannins and proanthocyanidins in the polyphenolic preparation, which caused a stronger inhibiting effect on caecal fermentation processes and at the same time lowered blood triacyl-glycerols and glucose level. Considering the equal content of ellagitannins in both supplemented diets, it may be speculated that the above effects were due to the presence of proanthocyanidin fraction.
Opis fizyczny
  • Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10–748 Olsztyn, Poland
  • Institute of Chemical Technology of Food, Technical University of Lodz, Stefanowskiego 4/10, 90–924 Lodz, Poland
  • Institute of Chemical Technology of Food, Technical University of Lodz, Stefanowskiego 4/10, 90–924 Lodz, Poland
  • Institute of Chemical Technology of Food, Technical University of Lodz, Stefanowskiego 4/10, 90–924 Lodz, Poland
  • Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10–748 Olsztyn, Poland
  • University of Science and Technology, Bernardynska 6/8, Bydgoszcz, Poland
  • 1. Aaby K., Mazur S., Nes A., Skrede G., Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: composition in 27 cultivars and changes during ripening. Food Chem., 2012, 132, 86-97.
  • 2. Aaby K., Skrede G., Wrolstad R.E., Phenolic composition and antioxidant activities in flesh and achenes of strawberries (Fragaria ananassa). J. Agric. Food Chem., 2005, 53, 4032-4040.
  • 3. AOAC. Official Methods of Analysis of AOAC International. 18th Edition. Editor Horowitz. W Latimer. G.W AOAC International, 2005, Maryland. USA.
  • 4. Aprikian O., Duclos V, Gujot S., Besson C., Manach C., Ber-nalier A., Morand C., Remesy C., Demigne C., Apple pectin and polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats. J. Nutr., 2003, 133, 1860-1865.
  • 5. Arapitsas P., Hydrolyzable tannin analysis in food. Food Chem., 2012, 135, 1708-1717.
  • 6. Balasundram N., Sundram K., Samman S., Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential use. Food Chem., 2006, 99, 191-203.
  • 7. Basu A., Wilkinson M., Penugonda K., Simmons B., Betts N.M., Lyons T.J., Freeze-dried strawberry powder improves lipid profile and lipid peroxidation in women with metabolic syndrome: baseline and post intervention effects. Nutr. J., 2009, 8, 43-49.
  • 8. Bialonska D., Kasimsetty S.G., Schrader K.K., Ferreira D., The effect of pomegranate (Punica granatum L.) byproducts and ellagitannins on the growth of human gut bacteria. J. Agric. Food Chem., 2009, 57, 8344-8349.
  • 9. Buendía B., Gil M.I., Tudela J.A., Gady A.L., Medina J.J., So-ria C., López J.M., Tomás-Barberán F.A., HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars. J. Agric. Food Chem., 2010, 58, 3916-3926.
  • 10. Cerdá B., Espín J.C., Parra S., Martinez P., Tomás-Barberán F.A., The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolised into bioavailable but poor antioxidant hydroxy-6H-dibenzopyran-6-one by the colonic microflora of healthy humans. Eur. J. Nutr., 2004, 43, 205-220.
  • 11. Cerdá B., Tomás-Barberán F.A., Espín J.C., Metabolism of antioxidant and chemopreventive ellagitannins from strawberries. Raspberries, walnuts and oak-aged wine in humans: identification of biomarkers and individual variability. J. Agric. Food Chem., 2005, 53, 227-235.
  • 12. Da Silva Pinto M., Lajolo M.F., Genovese M.I., Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch.). Food Chem., 2008, 107, 1629-1635.
  • 13. Espin J.C., Gonzalez-Barrio R., Cerda B., Lopez-Bote C., Rey, A.I., Tomas-Barberan F.A., Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitan-nins in humans. J. Agic. Food Chem., 2007, 55, 10476-10485.
  • 14. Esposito F., Arlotti G., Bonifati A.M., Napolitano A., Vitale D., Fogliano V, Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res. Int., 2005, 38, 1167-1173.
  • 15. Frejnagel S., Juskiewicz J., Dose-dependent effects of polyphenolic extracts from green tea, blue-berried honeysuckle, and chokeberry on rat caecal fermentation processes. Planta Med., 2011, 77, 888-893.
  • 16. Gasperotti M., Masuero D., Guella G., Palmieri L., Martinatti P., Pojer E., Mattivi F., Vrhovsek U., Evolution of ellagitannins content and profile during fruit ripening in Fragaria spp. J. Agric. Food Chem., 2013, 61, 8597-8607.
  • 17. Giampieri F., Tulipani S., Alvarez-Suarez J. M., Quiles J.L., Mezzetti B., Battino M., The strawberry: Composition, nutritional quality and impact on human health. Nutrition, 2012, 28, 9-19.
  • 18. Giménez-Bastida J.A., González-Sarrías A., Larrosa M., Tomás-Barberán F.A., Espín J.C., García-Conesa M.T., Ellagitannin metabolites. urolithin A glucuronide and its aglycone urolithin ,ameliorate TNF-a-induced inflammation and associated molecular markers in human aortic endothelial cells. Mol. Nutr. Food Res., 2012, 56, 784-796.
  • 19. González-Barrio R., Truchado P., Ito H., Espín J.C., Tomás-Barberán F.A., UV and MS identification of urolithins and na-sutins, the bioavailable metabolites of ellagitannins and ellagic acid in different mammals. J. Agric. Food Chem., 2011, 59, 1152-1162.
  • 20. Hambly R.J., Rumney C.J., Cunnighame M., Fletcher J.M.E., Rijken P., Rowland I.R., Influence of diets containing high and low risk factors for colon cancer on early stages of carcinogenesis in human-flora-associated (HFA) rats. Carcinogenesis, 1997, 18, 1535-1539.
  • 21. Jaroslawska J., Juskiewicz J., Wroblewska M., Jurgowski A., Krol B., Zdunczyk Z., Polyphenolrich strawberry pomace reduces serum and liver lipids and alters gastrointestinal metabolite formation in fructose-fed rats. J. Nutr., 2011, 141, 1777-1783.
  • 22. Jenkins D.J.A., Nguyen T.H., Kendall C.WC., Faulkner DA. Bashyam B. Kim I.J., Ireland C., Patel D., Vidgen E., Josse A.R., Sesso H.D., Burton-Freeman B., Josse R.G., Leiter L.A., Singer W, The effect of strawberries in a cholesterol-lowering dietary portfolio. Metab. Clin. Exp., 2008, 57, 1636-1644.
  • 23. Jurgonski A., Juskiewicz J., Zduńczyk Z., Comparative effects of different dietary levels of cellulose and fructooligosaccharides on fermentative processes in the caecum of rats. J. Anim. Feed Sci., 2008a, 17, 88-99.
  • 24. Jurgoński A., Juśkiewicz J., Zduńczyk Z., Ingestion of black chokeberry fruit extract leads to intestinal and systemic changes in a rat model of prediabetes and hyperlipidemia. Plant Foods Hum. Nutr., 2008b, 63, 176-182.
  • 25. Jurgonski A., Milala J., Juskiewicz J., Zdunczyk Z., Król B., Composition of chicory root, peel, seed and leaf ethanol extracts and biological properties of their non-inulin fractions. Food Technol. Biotechnol., 2011, 49, 40-47.
  • 26. Juśkiewicz J., Zduńczyk Z., Żary-Sikorska E., Król B., Milala J., Jurgoński A., Effect of the dietary polyphenolic fraction of chicory root. peel. seed and leaf extracts on caecal fermentation and blood parameters in rats fed diets containing prebiotic fructans. Brit. J. Nutr., 2011, 105, 710-720.
  • 27. Kennedy J.A., Jones G.P., Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phlo-roglucinol. J. Agric. Food Chem., 2001, 49, 1740-1746.
  • 28. Klewicka E., Zduńczyk Z., Juskiewicz J., Effect of lactobacillus fermented beetroot juice on composition and activity of cecal microflora in rats. Eur. Food Res. Technol., 2009, 229, 153-157.
  • 29. Klimczak E., Rozpara E., Król B., Distribution of ellagitannins in juice, flesh and achenes as additional criterion for optimal utilization of strawberries. Żywność. Nauka. Technologia. Jakość. 2011, 6(79), 142-154 (in Polish; English abstract).
  • 30. Kosmala M., Kołodziejczyk K., Zduńczyk Z., Juśkiewicz J., Boros D., Chemical composition of natural and polyphenol-free apple pomace and the effect of this dietary ingredient on intestinal fermentation and serum lipid parameters in rats. J. Agric. Food Chem., 2011, 59, 9177-9185.
  • 31. Kosmala M., Zduńczyk Z., Kołodziejczyk K., Klimczak E., Juśkiewicz J., Zduńczyk P., Chemical composition of polyphenols extracted from strawberry pomace and their effect on physiological properties of diets supplemented with different types of dietary fiber in rats. Eur. J. Nutr., 2014, 53, 521-532.
  • 32. Negi P.S., Jayaprakasha G.K., Antibacterial activity of grapefruit (Citrusparadisi) peel extract. Eur. Food Res. Technol., 2001, 213, 484-487.
  • 33. Landete J.M., Ellagitannins. ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res. Int., 2011, 44, 1150-1160.
  • 34. Larrauri J.A., Gońi I., Martin-Carrón N., Ruperez P., Saura-Calixto F., Measurement of health-promoting properties in fruit dietary fibres: antioxidant capacity, fermentability and glucose retardation index. J. Sci. Food Agric., 1996, 71, 515-519.
  • 35. Larrosa M., García-Conesa M.T., Espín J.C., Tomás-Barberán F.A., Ellagitannins, ellagic acid and vascular health. Mol. Aspects Med., 2010a, SI, 31, 513-539.
  • 36. Larrosa M., González-Sarrías A., Yáflez-Gascón M.J., Selma M.V, Azorín-Ortuflo M., Toti S., Tomás-Barberán F.A., Dolara P., Espín J.C., Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on the phenolic metabolism. J. Nutr. Biochem., 2010b, 21, 717-725.
  • 37. Manach C., Williamson G., Morand C., Scalbert A., Rémésy C., Bioavailability and bioefficiency of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81 (Suppl.), 230S-242S.
  • 38. Mertens-Talcott S.U., Jilma-Stohlawetz P., Rios J., Hingorani L., Derendorf H., Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum L.) polyphenols after ingestion of a standardized extract in healthy human volunteers. J. Agric. Food Chem., 2006, 54, 8956-8961.
  • 39. Okuda T., Yoshida T., Hatano T., Ito H., Ellagitannins Renewed the Concept of Tannins. 2009, in: Chemistry and Biology of El-lagitannins - an Underestimated Class of Bioactive Plant Polyphenols (ed. S. Quideau). World Scientific Publishing Co. Pte Ltd., Hackensack, NJ, USA, pp. 1-54.
  • 40. Oszmiański J., Wojdyło A., Comparative study of phenolic content and antioxidant activity of strawberry puree, clear and cloudy juices. Eur. Food Res. Technol., 2009, 228, 623-631.
  • 41. Priebe M.G., Vonk R.J., Sun X., He T., Harmsen H.J.M., Welling G.W., The physiology of colonic metabolism: possibilities for intervention with pre- and probiotics. Eur. J. Nutr., 2002, 41 (Suppl. I), I/2-I/10.
  • 42. Reeves P.G., Components of the AIN-93 diets as improvements in the AIN-76A Diet. J. Nutr., 1997, 127, 838S-841S.
  • 43. Saura-Calixto F., Dietary fiber as a carrier of dietary antioxidants: an essential physiological function. J. Agric. Food Chem., 2011, 59, 43-49.
  • 44. Schieber A., Stintzing F.C., Carle R., By-products of plant food processing as a source of functional compounds-recent developments. Trends Food Sci. Technol., 2001, 12, 401-413.
  • 45. Seeram N.P, Aronson WJ., Zhang Y., Henning S.M., Moro A., Lee R.-P., Sartippour M., Harris D.M., Rettig M., Suchard M.A., Pantuck A.J., Belldegrun A., Heber D., Pomegranate ellagitan-nin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J. Agric. Food Chem., 2007, 55, 7732-7737.
  • 46. Sójka M., Klimczak E., Macierzyński J., Kołodziejczyk K., Nutrient and polyphenolic composition of industrial strawberry press cake. Eur. Food Res. Technol., 2013, 237, 995-1007.
  • 47. Tomas-Barberan F.A., Garcia-Conesa M.T., Larrosa M., Cerda B., Gonzalez-Barrio R., Bermudez-Soto M.J., Gonzalez-Sarrias A., Espin J.C., Bioavailability, metabolism, and bioactivity of food ellagic acid and related polyphenols. Recent Adv. Polyphenol Res., 2008, 1, 263-277.
  • 48. Truchado P., Larrosa M., García-Conesa M.T., Cerdá B., Vidal-Guevara M.L., Tomás-Barberán F.A., Espín J.C., Strawberry processing does not affect the production and urinary excretion of urolithins, ellagic acid metabolites, in humans. J. Agric. Food Chem., 2012, 60, 5749-5754.
  • 49. Uchiyama M., Mihara M., Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem., 1978, 86, 271-278.
  • 50. Vitaglione P., Napolitano A., Fogliano V, Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci. Technol., 2008, 19, 451-463.
  • 51. Vrhovsek U., Guella G., Gasperotti M., Pojer E., Zancato M., Mattivi F., Clarifying the identity of the main ellagitannins in the fruit of the strawberry. Fragaria vesca and Fragaria anan-assa Duch. J. Agric. Food Chem., 2012, 60, 2507-2516.
  • 52. Williams B.A., Verstegen M.WA., Tamminga S., Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev., 2001, 14, 207-227.
  • 53. Wronkowska M., Juśkiewicz J., Zduńczyk Z., Soral-Śmietana M., Krupa-Kozak U., Influence of chemically-modified potato starch (RS type 4) on the nutritional and physiological indices of rats. Pol. J. Food Nutr. Sci., 2011, 61, 143-151.
  • 54. Zduńczyk Z., Juśkiewicz J., Estrella I., Cecal parameters of rats fed diets containing grapefruit polyphenols and inulin as single supplements or in combination. Nutrition, 2006, 22, 898-904.
  • 55. Zhang Y., Zhang Z., Yang Y., Zu X., Guan D., Wang Y., Diuretic activity of Rubus idaeus L (Rosaceae) in rats. Trop. J. Pharm. Res., 2011, 10, 243-248.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.