PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 06 |

Tytuł artykułu

Immunogold method evidences that kinesin and myosin bind to and couple microtubules and actin filaments in lipotubuloids of Ornithogalum umbellatum ovary epidermis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Lipotubuloids in ovary epidermis of Ornithogalum umbellatum which are a domain of cytoplasm containing a lot of lipid bodies, microtubules and actin filaments, ribosomes, endoplasmic reticulum as well as scarce mitochondria, microbodies, dictyosomes, autolytic vacuoles, exhibit progressive-rotary motion. The immunogold method demonstrated that microtubules and actin filaments of lipotubuloids might be connected with one another by myosin and kinesin. It was supposed that collaboration of motor proteins with actin filaments and microtubules makes autonomic high peripheral speed rotary motion of lipotubuloids in epidermis cells possible. Moreover, myosin was also detected in Golgi bodies in lipotubuloid. In lipotubuloids, the immunogold method demonstrated immunosignals after the use of an antibody to dynein light chains but spectroscopy mass analysis showed that in O. umbellatum epidermis lacked dynein heavy chains.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

06

Opis fizyczny

p.1967-1977,fig.,ref.

Twórcy

  • Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Ło´dz´, Pomorska 141/143, 90-236 Ło´dz´, Poland
autor
  • Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Ło´dz´, Pomorska 141/143, 90-236 Ło´dz´, Poland
autor
  • Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Ło´dz´, Pomorska 141/143, 90-236 Ło´dz´, Poland
autor
  • Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Ło´dz´, Pomorska 141/143, 90-236 Ło´dz´, Poland
autor
  • Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Ło´dz´, Pomorska 141/143, 90-236 Ło´dz´, Poland

Bibliografia

  • Ali MY, Lu H, Bookwalter CS, Warshaw DM, Trybus KM (2008) Myosin V and kinesin act as tethers to enhance each others’ processivity. Proc Natl Acad Sci USA 105:4691–4696
  • Avisar D, Abu-Abied M, Belausov E, Sadot E, Hawes Ch, Sparkes IA (2009) A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. Plant Physiol 150:700–709
  • Avisar D, Abu-Abied M, Belausov E, Sadot E (2012) Myosin XIK is a major player in cytoplasm dynamics and its regulated by two amino acids in its tail. J Exp Bot 63:241–249
  • Bendayan M, Zollinger M (1983) Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J Histochem Cytochem 31:101–109
  • Brozzi F, Diraison F, Lajus S, Rajatileka S, Philips T, Regazzi R, Fukuda M, Verkade P, Molnár E, Váradi A (2012) Molecular mechanism of myosin Va recruitment to dense core secretory granules. Traffic 13:54–69
  • Buers I, Robenek H, Lorkowski S, Nitsche Y, Severs NJ, Hofnagel O (2009) TIP47, a lipid cargo protein involved in macrophage triglyceride metabolism. Arterioscl Throm Vas 29:767–773
  • Cao TT, Chang W, Masters SE, Mooseker MS (2004) Myosin-Va binds to and mechanochemically couples microtubules to actin filaments. Mol Biol Cell 15:151–161
  • Chrétien D, Flyvbierg H, Fuller SD (1998) Limited flexibility of the inter-protofilament bonds in microtubules assemble from pure tubulin. Eur Biophys J 27:490–500
  • Collings D (2009) Twisting to a different rhythm: how plants have used conserved microtubules for plant-specific functions. Aust Biochem 40:14–18
  • Collings DA, Lill AW, Himmelspach R, Wasteneys GO (2006) Hypersensivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana. New Phytol 170:275–290
  • Drabik P, Gusarov S, Kovalenko A (2007) Microtubule stability studied by three-dimensional molecular theory of salvation. Biophys J 92:394–403
  • Esseling-Ozdoba A, Houtman D, van Lammeren AA, Eiser E, Emons AM (2008) Hydrodynamic flow in the cytoplasm of plant cells. J Microsc 231:274–283
  • Faulk WP, Taylor GM (1971) An immunocolloid method for the electron microscope. Immunochemistry 8:1081–1083
  • Frey N, Klotz J, Nick P (2009) Dynamic bridges—a calponin-domain kinesin from rice links actin filaments and microtubules in both cycling and non-cycling cells. Plant Cell Physiol 50:143–1506
  • Goode BL, Drubin DG, Barnes G (2000) Functional cooperation between the microtubule and actin cytoskeletons. Curr Opin Cell Biol 12:63–71
  • Guérin T, Prost J, Martin P, Joanny J-F (2010) Coordination and collective properties of molecular motors: theory. Curr Opin Cell Biol 22:14–20
  • Gunning BES, Hardham AR (1982) Microtubules. Annu Rev Plant Physiol 33:651–698
  • Ho AYY, Day DD, Brown MH, Marc J (2009) Arabidopsis phospholipase Dőas an initiator of cytoskeleton-mediated signaling to fundamental cellular processes. Funct Plant Biol 36:190–198
  • Huang J-D, Brady ST, Richards BW, Stenoien D, Resau JH, Copeland NG, Jenkins NA (1999) Direct interaction of microtubule- and actin-based transport motors. Nature 397:267–270
  • Huang S, Jin L, Du J, Lin H, Zhao Q, Ao G, Yuan M (2007) SB401, a pollen-specific protein from Solanum berthaultii, binds to and bundles microtubules and F-actin. Plant J 51:406–418
  • Hunyadi V, Ja´nosi IM (2007) Metastability of microtubules induced by competing internal forces. Biophys J 92:3092–3097
  • King SM (2002) Dyneins motor on in plants. Traffic 3:930–931
  • Kis A, Kasas S, Babić B, Kulik AJ, Benoit W, Briggs GAD, Schönenberger C, Catsicas S, Forro´ L (2002) Nanomechanics of microtubules. Phys Rev Lett 89:248101
  • Klotz J, Nick P (2012) A novel actin-microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. New Phytol 193:576–589
  • Krebs A, Goldie KN, Hoenger A (2005) Structural rearrangement in tubulin following microtubule formation. EMBO Rep 6:227–232
  • Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9:338–352
  • Kunda P, Baum B (2009) The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol 19:174–179
  • Kwiatkowska M (1972) Changes in the diameter of microtubules connected with the autonomous rotary motion of the lipotubuloids (elaioplasts). Protoplasma 75:345–357
  • Kwiatkowska M, Popłońska K, Stępiński D (2005) Actin filaments connected with microtubules of lipotubuloids—cytoplasmic domains rich in lipid bodies and microtubules. Protoplasma 226:163–167
  • Kwiatkowska M, Popłońska K, Stępiński D, Hejnowicz Z (2006) Microtubules with different diameter, protofilament number and protofilament spacing in O. umbellatum ovary epidermis cells. Folia Histochem Cytobiol 44:133–138
  • Kwiatkowska M, Popłońska K, Kaźmierczak A, Stępiński D, Rogala K, Polewczyk K (2007) Role of DNA endoreduplication, lipotubuloids, gibberellic acid in epidermal cell growth during fruit development of O. umbellatum. J Exp Bot 58:2023–2031
  • Kwiatkowska M, Stępiński D, Popłońska K (2009) Diameters of microtubules change during rotation of the lipotubuloids of Ornithogalum umbellatum stipule epidermis as a result of varying protofilament monomers sizes and distance between them. Cell Biol Int 33:1245–1252
  • Kwiatkowska M, Stępiński D, Popłońska K, Wojtczak A, Polit JT (2010) ‘‘Elaioplasts’’ of Haemanthus albiflos are true lipotubuloids—cytoplasmic domains rich in lipid bodies entwined by microtubules. Acta Physiol Plant 32:1189–1196
  • Kwiatkowska M, Stępiński D, Popłońska K, Wojtczak A, Polit JT (2011a) ‘‘Elaioplasts’’ identified as lipotubuloids in Althaea rosea, Funkia Sieboldiana and Vanilla planifolia contain lipid bodies connected with microtubules. Acta Soc Bot Pol 80:211–219
  • Kwiatkowska M, Popłońska K, Polit JT, Wojtczak A, Stępiński D, Paszak K (2011b) Lipid bodies in lipotubuloids of Ornithogalum umbellatum ovary epidermis contain diacylglycerol acyltransferase 2 (DGAT2) and lipase, incorporate 3H-palmitic acid and are connected with cuticle synthesis. Trends Cell Mol Biol 6:97–108
  • Kwiatkowska M, Popłońska K, Wojtczak A, Stępiński D (2012) Lipid body biogenesis and the role of microtubules in lipid synthesis in Ornithogalum umbellatum lipotubuloids. Cell Biol Int 36:455–462
  • Lam SK, Cai Y, Hillmer S, Robinson DG, Jiang L (2008) SCAMPs highlight the developing cell plate during cytokinesis in tobacco BY-2 cells. Plant Physiol 147:1637–1645
  • Lawrence CJ, Morris NR, Meagher RB, Dawe RK (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363
  • Lee Y-R, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136:3877–3883
  • Lenartowska M, Isaji M, Miller KG (2012) A pre-embedding immunogold approach reveals localization of myosin VI at the ultrastructural level in the actin cones that mediate Drosophila spermatid individualization. Protoplasma 249:337–346
  • Li Y, Shen Y, Cai C, Zhong C, Zhu L, Yuan M, Ren H (2010) The type II Arabidopsis formin 14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell 22:2710–2726
  • Livanos P, Galatis B, Quader H, Apostolakos P (2012) Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton69:1–21
  • Loubéry S, Delevoye C, Louvard D, Raposo G, Coudrier E (2012) Myosin VI regulates actin dynamics and melanosome biogenesis. Traffic 13:665–680
  • Lö we J, Li H, Downing KH, Nogales E (2001) Refined structure of ab-tubulin at 3.5 A ° resolution. J Mol Biol 313:1045–1057
  • McFie PJ, Banman SL, Kary S, Stone SJ (2011) Murine diacylglycerol acyltransferase-2 (DGAT2) can catalyze triacylglycerol synthesis and promote lipid droplet formation independent of its localization to the endoplasmic reticulum. J Biol Chem 286: 28235–28246
  • Meurer-Grob P, Kasparian J, Wade RH (2001) Microtubule structure at improved resolution. Biochemistry 40:8000–8008
  • Mucha E, Fricke I, Schaefer A, Wittinghofer A, Berken A (2011) Rho proteins of plants- functional cycle and regulation of cytoskeletal dynamics. Eur J Cell Biol 90:934–943
  • Nakata T, Niwa S, Okada Y, Perez F, Hirokawa N (2011) Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. J Cell Biol 194:245–255
  • Nogales EA (1999) Structural view of microtubule dynamics. Cell Mol Life Sci 56:133–142
  • Nogales E, Wang HW (2006) Structural intermediates in microtubule assembly and disassembly how and why? Curr Opin Cell Biol 18:179–184
  • Nogales E, Whittaker M, Milligan RA, Downing KH (1999) Highresolution model of the microtubule. Cell 96:79–88
  • Oelkers JM, Vinzenz M, Nemethova M, Jakob S, Lai FPL, Block J, Szczodrak M, Kerkhoff E, Backert S, Schlüter K, Stradal TEB, Small JV, Koestler SA, Rottner K (2011) Microtubules as platforms for assaying actin polymerization in vivo. PLoS ONE 6:e19931
  • Omoto CK, Kung C (1980) Rotation and twist of central-pair microtubules in the cilia of paramecium. J Cell Biol 87:33–46
  • Petrášek JP, Schwarzerowá K (2009) Actin and microtubule cytoskeleton interactions. Curr Opin Plant Biol 12:728–734
  • Pfister KK, Shah PR, Hummerich H, Russ A, Cotton J, Annuar AA, King SM, Fisher EMC (2006) Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet 2(1):e1
  • Preuss ML, Kovar DR, Lee Y-RJ, Staiger CJ, Delmer DP, Liu B (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136:3945–3955
  • Rapali P, Szenes A, Radnai L, Bakos A, Pal AG, Nyitray L (2011) DYNLL/LC8: a light chain subunit of dynein motor complex and beyond. FEBS J 278:2980–2996
  • Reynolds ES (1963) The use of lead citrate of high pH as an electronopaque stain in electron microscopy. J Cell Biol 17:208–212
  • Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599–609
  • Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M (2007) Microtubule- and actin filament-dependent motors are distributed on pollen tube mitochondria and contribute differently to their movement. Plant Cell Physiol 48:345–361
  • Sainsbury F, Collings DA, Mackun K, Gardiner J, Hepler JDI, Marc J (2008) Developmental reorientation of transverse cortical microtubules to longitudinal directions: a role for actomyosin-based streaming and partial microtubule-membrane detachment. Plant J 56:116–131
  • Sampathkumar A, Lindeboom JJ, Debolt S, Gutierrez R, Ehrhardt DW, Ketelaar T, Persson S (2011) Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell. doi:10.1105/tpc.111.087940
  • Schroeder HW III, Mitchell C, Shuman H, Holzbaur ELF, Goldman YE (2010) Motor number controls cargo switching at actinmicrotubule intersections in vitro. Curr Biol 20:687–696
  • Sept D, Bakere NA, McCammon JA (2003) The physical basis of microtubule structure and stability. Protein Sci 12:2257–2261
  • Shanina NA, Lazareva EM, Skorova EY, Chentsov YS, Smirnova EA (2009) A high molecular weight polypeptide cross-reacting with the antibodies to the dynein heavy chain localizes to the subset to Golgi complex in higher plant cells. Cell Biol Int 33:290–300
  • Shevchenko GV (2009) Interaction of microtubules and microfilaments in the zone of distal elongation of Arabidopsis thaliana roots. Cytol Genet 43:223–229
  • Stone SJ, Levin MC, Zhou P, Han J, Walther TC, Farese RV Jr (2009) The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem 284:5352–5361
  • Tai AW, Chuang J-Z, Sung C-H (1998) Localization of Tctex-1, a cytoplasmic dynein light chain, to the Golgi apparatus and evidence for dynein complex heterogeneity. J Biol Chem 273:19639–19649
  • Tuszyński JA, Luchko T, Porter S, Dixon JM (2005) Anisotropic elastic properties of microtubules. Eur Phys J E 17:29–35
  • Verchot-Lubicz J, Goldstein RE (2010) Cytoplasmic streaming enables the distribution of molecules and vesicles in large cell. Protoplasma 240:99–107
  • Wang HW, Nogales E (2005) Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435: 911–915
  • Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786
  • Wei L, Zhang W, Liu Z, Li Y (2009) AtKinesin-13A is located on Golgi-associated vesicle and involved in vesicle formation/budding in Arabidopsis root-cap peripheral cells. BMC Plant Biol 9:138. doi:10.1186/1471-2229-9-138
  • Xu T, Qu Z, Yang X, Qin X, Xiong J, Wang Y, Ren D, Liu G (2009) A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem J 421:171–180
  • Yasuda H, Kanda K, Koiwa H, Suenaga K, Kidou S, Ejiri S (2005) Localization of actin filaments on mitotic apparatus in tobacco BY-2 cells. Planta 222:118–129

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2b78a67b-3c0b-4c35-b39e-4942438ef2d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.