PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 3 |

Tytuł artykułu

Over-expression of the Arabidopsis Na plus H plus antiporter gene in Populus deltoides CL x P. euramericana CL "NL895 "enhances its salt tolerance

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soil salinity is a serious problem worldwide. It is necessary to improve the salt tolerance of plants to avoid the progressive deterioration of saline soil. We showed that the over-expression of AtNHX1 improves salt tolerance in a transgenic poplar (Populus deltoides CL × P. euramericana CL ‘‘NL895’’) under mannose selection. Four transgenic poplar plants were obtained. Southern blot analysis showed that the pmi gene had integrated into the genome of the poplar. RT-PCR confirmed that AtNHX1 could be expressed normally in the transgenic plants. When tested for salt tolerance by NaCl stress, we measured a 100% increase in Na⁺ content in the three transgenic lines (T18, T50, T98) significantly higher than the 33% increase seen in wild-type plants. The chlorophyll content of the transgenic plants was not altered significantly, while the chlorophyll content in the control plants showed a small decrease. MDA content was decreased in the transgenic plants. These results show that the AtNHX1 gene may enhance salt tolerance due to increased vacuolar compartmentalization of sodium ions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

3

Opis fizyczny

p.691-696,fig.,ref.

Twórcy

autor
  • Key Lab of Tree Genomics, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, Zhejiang, China
autor
  • Key Lab of Tree Genomics, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, Zhejiang, China
autor
  • Key Lab of Tree Genomics, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, Zhejiang, China
autor
  • Key Lab of Tree Genomics, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, Zhejiang, China
autor
  • Key Lab of Tree Genomics, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, Zhejiang, China
autor
  • Key Lab of Tree Genomics, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, Zhejiang, China
autor
  • Key Lab of Tree Genomics, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, Zhejiang, China
autor
  • Key Lab of Tree Genomics, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, Zhejiang, China
  • Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
autor
  • Key Lab of Tree Genomics, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, Zhejiang, China
autor
  • State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China

Bibliografia

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by over-expression of a vacuolar Na⁺/H⁺ antiport in Arabidopsis. Science 285:1256–1258
  • Aswath CR, Mo SY, Kim DH, Park SW (2006) Agrobacterium and biolistic transformation of onion using non-antibiotic selection marker phosphomannose isomerase. Plant Cell Rep 5:92–99
  • Barb AW, Pharr DM, Williamson JD (2003) Anicotiana tabacum cell culture selected for accelerated growth on man has increased expression of phosphomannose isomerase. Plant Sci 165: 639–648
  • Boscariol RL, Almeida WA, Derbyshire MT, Mourao Filho FA, Mendes BM (2003) The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L Osbeck). Plant Cell Rep 22:122–128
  • Doyle JJ, Dickson EE (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNHX1 and AVP1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485
  • Goldsworthy A, Street HE (1965) The carbohydrate nutrition of tomato roots. VIII. The mechanism of the inhibition by D-mannose of the respiration of excised roots. Ann Bot 29:45–58
  • He Z, Duan Z, Liang W, Chen F, Yao W, Liang H, Yue C, Sun Z, Chen F, Dai J (2006) Mannose selection system used for cucumber transformation. Plant Cell Rep 25(9):953–958
  • Holster SM, de Waele D, Depicker A, Messens E, van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187
  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgen Res 2:208–218
  • Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117
  • Joseph S, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  • Kim JY, Jung M, Kim HS, Lee YH, Choi SH, Lim YP, Min BW, Yang SG, Harn CH (2002) A new selection system for pepper regeneration by mannose. J Plant Biotechnol 4:129–134
  • Lu YJ, Zheng KL (1992) A simple method for isolation of rice DNA. Chin J Rice 6:47–48 (In Chinese with English abstract)
  • Miles JS, Guest JR (1984) Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. Gene 32:41–48
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497
  • O’Kennedy MM, Burger JT, Botha FC (2004) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690
  • Sigareva M, Spivey R, Willits MG, Kramer CM, Chang YF (2005) An efficient mannose selection protocol for tomato that has no adverse effect on the ploidy level of transgenic plants. Plant Cell Rep 23:236–245
  • Todd R, Tague GW (2001) Phosphomannose isomerase: a versatile selectable marker for Arabidopsis thaliana germline transformation. Plant Mol Biol Rep 19:307–319
  • Whelan J, Smith MK, Meijer M, Yu JW, Badger MR (1995) Cloning of an additional cDNA for the alternative oxidase in tobacco. Physiol Plant 107:1469–1470
  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize and wheat using the phosphomannose isomerase gene, pmi as the selectable marker. Plant Cell Rep 20:429–436
  • Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na⁺/H⁺ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na⁺. Plant Sci 167:849–859
  • Yokoi S, Bressan RA, Hasegawa EM (2002) Salt stress tolerance of plant. JIRCAS Working Rep:25–33
  • Zhang ZL (1990) The experiment guide for plant physiology. Higher Education Press, Beijing (in chinese)
  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechno1 19:765–768
  • Zhang P, Puonti-Kaerlas J (2000) PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep 19:1041–1048
  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants. Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836
  • Zhu YJ, Agbayani R, McCafferty H, Albert HH, Moore PH (2005) Effective selection of transgenic papaya plants with the PMI/Man selection system. Plant Cell Rep 24:426–432

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2b76075a-f32d-413c-a484-5f8e6828aa0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.