Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 4 |

Tytuł artykułu

Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L.

Warianty tytułu

Języki publikacji



Salvia officinalis L. is a medicinal plant containing several compounds with important pharmacological activity. In this study, we investigated the effects of water deficit (moderate and severe water deficits) on the contents of total and individual polyphenols of the aerial parts. Also, we studied the effect of drought on the antioxidant activity of methanolic extracts. Our results showed that water deficiency, as estimated by the decrease in water potential, resulted in a reduction of the biomass, plant height and total chlorophyll contents. In general, drought increased the level of total and individual polyphenols and this increase was more pronounced under moderate water deficit. These findings suggest that S. Officinalis is a sensitive species and that a severe water deficit could result in a decline in the activity of enzymes involved in the biosynthesis of phenolic compounds. On the other hand, our results showed an enhancement of reducing power and the radical scavenging activity as assessed using the DPPH assay with increasing stress severity. Finally, the evaluation of the chelating capacity of the extracts was found to be altered significantly under severe treatment by 39.71%. Based on these results, it seems that drought tolerance of S. officinalis is related to the capacity of the plant to modulate its phenolics in order to face to oxidative stress caused by water limiting conditions.

Słowa kluczowe








Opis fizyczny



  • Laboratoire des Substances Bioactives Centre de Biotechnologie a la Technopole de Borj-Cedria (CBBC), BP 901, Hammam-Lif, Tunisia
  • Laboratoire des Substances Bioactives Centre de Biotechnologie a la Technopole de Borj-Cedria (CBBC), BP 901, Hammam-Lif, Tunisia
  • Laboratoire des Substances Bioactives Centre de Biotechnologie a la Technopole de Borj-Cedria (CBBC), BP 901, Hammam-Lif, Tunisia
  • Laboratoire des Substances Bioactives Centre de Biotechnologie a la Technopole de Borj-Cedria (CBBC), BP 901, Hammam-Lif, Tunisia
  • Laboratoire des Substances Bioactives Centre de Biotechnologie a la Technopole de Borj-Cedria (CBBC), BP 901, Hammam-Lif, Tunisia


  • Abreu IN, Mazzafera P (2005) Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol Biochem 43:241–248
  • Ali RM, Abbas HM (2003) Reponse of salt stress barley seedlings to phenylurea. Plant Soil Environ 49:158–162
  • Arnon D (1949) Copper enzymes isolated chloroplasts. Polyphenoloxydase in Beta vulgaris. Plant Physiol 24:1–15
  • Ayaz FA, Kadioglu A, Turgut R (2000) Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setose (Rosc.) Eichler. Can J Plant Sci 80:373–378
  • Bettaieb I, Zakhama N, Aidi Wannes W, Kchouk ME, Marzouk B (2009) Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci Hort 120:271–275
  • Bilger W, Veit M, Schreiber L, Schreiber U (1997) Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiol Plant 101:754–763
  • Bor M, Özdemir F, Türkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84
  • Bouyoucos (1983) Les propriétés physiques du sol de'pendent de są texture et de sa structure, Les Bases de la Production Végétale, tome 1, Collection sciences et techniques agricoles, Bressuire, pp 67–87
  • Briekson C, Dömling HJ (1969) Carnosic acid as an antioxidant in rosemary and sage leaves. Z Lebensm Unters Forsch 141:10–16
  • Bruneton J (1999) (Ed.), Pharmacognosy, Phytochemistry, Medicinal Plants, 2nd edn. Lavoisier Publishing, Paris, pp 540–544
  • Camacho-Cristobal JJ, Lunar L, Lafont F, Baumert A, Gonzalez-Fontes A (2004) Boron deficiency causes accumulation of chlorogenic acid and caffeol polyamine conjugates in tobacco leaves. J Plant Physiol 161:879–881
  • Chipault JR, Mizuno GR, Lundberg WO (1956) The antioxidant properties of spices in foods. Food Technol 10:209–211
  • Collakova E, Dellapenna D (2003) The role of homogentisate phytyltransferase and other tochopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol 133:930–940
  • Cuvelier ME, Richard H, Berset C (1996) Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. JAOCS 73:645–652
  • Dapkevicius A, Venskutonis R, Van Beek TA, Linssen JPH (1998) Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. J Sci Food Agric 77:140–146
  • del Bano MJ, Lorente J, Castillo J, Benavente-Garcia O, del Rio JA, Ortuno A, Quirin KW, Gerard D (2003) Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. J Agric Food Chem 51:4247–4253
  • Del Moral R (1972) On the variability of chlorogenic acid concentration. Oecologia 9:289–300
  • Dewanto VX, Wu K, Adom K, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014
  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097
  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717
  • Giorgi A, Mingozzi M, Madeo M, Speranza G, Cocucci M (2009) Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb). Food Chem 14:204–211
  • Gitz DC, Lui-Gitz L, McClure JW, Huerta AJ (2004) Effects of PAL inhibitor on phenol accumulation and UV-B tolerance in Spirodela intermedia (Koch.). J Exp Bot 55:919–927
  • Grace S (2005) Phenolics as antioxidants. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 141–168
  • Hanato H, Kagawa T, Yasuhara T (1988) Two new flavonoids and other constituents in licorice root their relative astringency and radical scavenging effect. Chem Pharm Bull 36:1090–1097
  • Hermann K (1981) The antioxidative action of spices. Dtsch Lebensmitt Rundsch 77:134–139
  • Hernandez I, Alegre L, Munne-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular-weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311
  • Hu C, Zhang Y, Kitts DD (2000) Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. Henonis leaf extract in vitro. J Agric Food Chem 48:3170–3176
  • Huang YC, Chang YH, Shao YY (2006) Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food Chem 98:529–538
  • Hura T, Hura K, Grzesiak S (2008) Contents of total phenolics and ferulic acid, and PAL activity during water potential changes in leaves of maize single-cross hybrids of different drought tolerance. J Agron Crop Sci 194:104–112
  • Kacperska A (1993) Water potential alteration—a prerequisite or a triggering stimulus for the development of freezing tolerance in overwintering herbaceous plants. In: Li PH, Christerson L (eds) Advances in plant cold hardiness. CRC Press, Boca Raton, pp 73–91
  • Kiani SP, Maury P, Sarrafi A, Grieuu A (2008) QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci 175:565–573
  • Kim HJ, Chen F, Wang X, Choi JH (2006) Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J Agric Food Chem 54:7263–7269
  • Kim HJ, Fonseca JM, Choi JH, Kubota C, Kwon DY (2008) Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). J Agric Food Chem 56:3772–3776
  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249
  • Kyparissis A, Petropoulou Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L. Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46:1825–1831
  • Landry LG, Chappel CCS, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced UVB injury and oxidative damage. Plant Physiol 109:1159–1166
  • Leyva A, Jarrillo JA, Salinas JM, Martınez-Zapater M (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNA of Arabidopsis thaliana in light-dependent manner. Plant Physiol 108:39–46
  • Li L, Staden JV (1988) Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. J Plant Growth Regul 24:55–66
  • Li J, Ou-Lee T, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179
  • Lin KH, Chao PY, Yang CM, Cheng WC, Lo HF, Chang TR (2006) The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Bot Stud 47:417–426
  • Lu Y, Foo LY (1999) Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry 51:91–94
  • Lu Y, Foo LY (2000) Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry 55:263–267
  • Madsen HL, Bertelsen G (1995) Spices as antioxidants. Trends Food Sci Technol 6:271–277
  • Meot-Duros L, Magné C (2009) Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiol Biochem 47:37–41
  • Munné-Bosch S, Penuelas J (2003) Photo and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766
  • Munné-Bosch S, Mueller M, Schwarz K, Alegre L (2001) Diterpenes and antioxidative protection in drought stressed Salvia officinalis plants. J Plant Physiol 158:1431–1437
  • Namiki M (1990) Antioxidants/antimutagens in foods. Crit Rev Food Sci Nutr 29:273–300
  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113
  • Nogués S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot 51:1309–1317
  • Nogués S, Allen DJ, Morison JIL, Baker NR (1998) Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiol 117:173–181
  • Oh MM, Trick HN, Rajashekar CB (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J Plant Physiol 166:180–191
  • Oyaizu M (1986) Studies on products of browning reaction: antioxidative activity of products of browning reaction. Jpn J Nutr 44:307–315
  • Proestos C, Boziaris IS, Nychas GJE, Komaitis M (2006) Analysis of flavonoids and phenolic acids in Greek aromatic plants: investigation of their antioxidant capacity and antimicrobial activity. Food Chem 95:664–671
  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202
  • Rice-Evans CA, Miller JN, Paganga G (1996) Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956
  • Scandalios JG (1993) Oxygen stress and superoxide dismutase. Plant Physiol 101:7–12
  • Scarascia-Mugnozza G, De Angelis P, Matteucci G, Valentini R (1996) Long term exposure to elevated [CO2] in a natural Quercus ilex L. community: net photosynthesis and photochemical efficiency of PSII at different levels of water stress. Plant Cell Environ 19:643–654
  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346
  • Sgherri C, Stevanovic B, Navari-Izzo F (2004) Role of phenolic acid during dehydration and rehydration of Ramonda serbica. Physiol Plant 122:478–485
  • Smirnof FN (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58
  • Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salttolerant and salt sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442
  • Velioglu YS, Massa G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117
  • Viera HJ, Bergamaschi H, Angelocci LR, Libardi PL (1991) Performance of two bean cultivars under two water availability regimes. II. Stomatal resistance to vapour diffusion, transpiration flux density and water potential in the plant (in Portuguese). Pesq Agropec Bras 9:1035–1045
  • Yaginuma S, Shiraishi T, Ohya H, IgarashiK(2002) Polyphenol increases in safflower and cucumber seedlings exposed to strong visible light with limited water. Biosci Biotechnol Biochem 66:65–72
  • Zhao H, Dong J, Lu J, Chen J, Li Y, Shan Y, Fan W, Gu G (2006) Effect of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in Barley (Hordeum vulgare L.). J Agric Food Chem 54:277–286


Rekord w opracowaniu

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.