Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 3 |

Tytuł artykułu

Numerical investigating the effect of water depth on ship resistance using RANS CFD method

Warianty tytułu

Języki publikacji



On inland waterways the ship resistance and propulsive characteristics are strictly related to the depth of the waterway, thus it is important to have an understanding of the influence of water depth on ship hydrodynamic characteristics. Therefore, accurate predictions of hydrodynamic forces in restricted waterways are required and important. The aim of this paper is investigating the capability of the commercial unsteady Reynolds– Averaged Navier–Stokes (RANS) solver to predict the influence of water depth on ship resistance. The volume of fluid method (VOF) is applied to simulate the free surface flow around the ship. The hull resistance in shallow and deep water is compared. The obtained numerical results are validated against related experimental studies available in the literature

Słowa kluczowe








Opis fizyczny



  • Ho Chi Minh City University of Transport, Ho Chi Minh, Vietnam
  • Ho Chi Minh City University of Transport, Ho Chi Minh, Vietnam
  • Vietnam Maritime University, Haiphong, Vietnam
  • Vietnam Maritime University, Haiphong, Vietnam
  • Hochiminh City University of Technology, Ho Chi Minh, Vietnam
  • Vietnam National University, Hanoi, Vietnam


  • 1. Larsson, L. and H. Raven, Ship resistance and flow. 2010: Society of Naval Architects and Marine Engineers.
  • 2. Bertram, V., Practical ship hydrodynamics. 2011: Elsevier.
  • 3. Artjushkov, L., Wall effect correction for shallow water model tests. NE Coast Institution of Engineers and Shipbuilders., 1968.
  • 4. Geerts, S., Verwerft, B., Vantorre, M., and Van Rompuy, F., Improving the efficiency of small inland vessels. Proc., 7th European Inland Waterway Navigation Conf., Budapest Univ. of Technology and Economics, Budapest, Hungary., 2010.
  • 5. Karpov, A., Calculation of ship resistance in restricted waters. TRUDY GII. T. IV, Vol. 2 (in Russian). 1946.
  • 6. Linde, F., et al., Three-Dimensional Numerical Simulation of Ship Resistance in Restricted Waterways: Effect of Ship Sinkage and Channel Restriction. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2016. 143(1): p. 06016003.
  • 7. ITTC 2014 Specialist committee on CFD in marine hydrodynamics—27th ITTC.
  • 8. Prakash, S. and B. Chandra, Numerical estimation of shallow water resistance of a river-sea ship using CFD. International journal of computer applications, 2013. 71(5).
  • 9. Pacuraru, F. and L. Domnisoru. Numerical investigation of shallow water effect on a barge ship resistance. in IOP Conference Series: Materials Science and Engineering. 2017. IOP Publishing.
  • 10. Patel, P.K. and M. Premchand, Numerical investigation of the influence of water depth on ship resistance. International Journal of Computer Applications, 2015. 116(17).
  • 11. Tezdogan, T., A. Incecik, and O. Turan, A numerical investigation of the squat and resistance of ships advancing through a canal using CFD. Journal of Marine Science and Technology, 2016. 21(1): p. 86–101.
  • 12. Molland, A.F., S.R. Turnock, and D.A. Hudson, Ship resistance and propulsion. 2017: Cambridge university press.
  • 13.
  • 14. Resistance test report in deep water for DTMB vessel. CTO, Poland 2017.
  • 15. Resistance test report in shallow water for DTMB vessel. CTO, Poland 2017.
  • 16. CD-ADAPCO. User Guide STAR-CCM+, Version 13.02. 2018.
  • 17. Bettle, M., S.L. Toxopeus, and A. Gerber, Calculation of bottom clearance effects on Walrus submarine hydrodynamics. International Shipbuilding Progress, 2010. 57(3-4): p. 101–125.
  • 18. ITTC 2011b Recommended procedures and guidelines 7.5-03-02-03.19. ITTC-Quality Manual 7.5-03-01-01, 2008.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.