Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 4 |
Tytuł artykułu

Antioxidative and chelating properties of anthocyanins in Azolla imbricata induced by cadmium

Treść / Zawartość
Warianty tytułu
Języki publikacji
To investigate the biological activities of anthocyanins, which are induced by cadmium in A. imbricata, the antioxidant properties of anthocyanins were investigated using various antioxidant assays, namely 1,1 -diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, 2,2'-azinobis-(3-ethylbenzthiazoline-6- sulfonic acid) (ABTS) radical scavenging activity, reducing power, and β-carotene bleaching assay. Results showed that anthocyanins exhibited excellent antioxidant activities in all assays and the EC₅₀ values of DPPH radicals scavenging, ABTS radicals scavenging, reducing power and β-carotene bleaching assay were 19.08, 10.69, 40.93, and 44.19 µg∙mL⁻¹, respectively. The Cd²⁺ chelation potency of anthocyanins was also investigated in vitro. Under given conditions, Cd²⁺ chelating ability of anthocyanins increased significantly with increase in contact time, anthocyanins concentration in dialysis tubing and Cd²⁺ concentration in solution. Based on these results, anthocyanins inducibly synthesized by Cd2 treatment was a powerful antioxidant, as well as Cd²⁺ chelator, might play a role in detoxification of Cd in A. imbricata.
Opis fizyczny
  • School of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People’s Republic of China
  • 1. BENAVIDES M.P., GALLEGO S.M., TOMARO M.L. Cadmium toxicity in plants. Braz. J. Plant Physiol. 17, 21, 2005
  • 2. GRATÃO PL., POLLE A., LEA P.J., AZEVEDO R A. Making the life of heavy metal-stress plants a little easier. Funct. Plant Biol. 32, 481, 2005.
  • 3. FOYER C.H., NOCTOR G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environ. 28, 1056, 2005.
  • 4. FOYER C.H., NOCTOR G. Redox Homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 17, 1866, 2005.
  • 5. APEL K., HIRT H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373, 2004.
  • 6. MITTLER R., VANDERAUWERA S., GOLLERY M., BREUSEGEM F.V. Reactive oxygen gene network of plants. Trends Plant Sei. 9, 1360, 2004.
  • 7. BAILEY-SERRES J., MITTLER R. The roles of reactive oxygen species in plant cells. Plant Physiol. 141, 311, 2006.
  • 8. MICHALAK A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Said. 15, 523, 2006.
  • 9. COBBETT C., GOLDSBROUGH P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant. Biol. 53, 159, 2002.
  • 10. HALL J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1, 2002.
  • 11. LONGO L., SCARDINO A, VASAPOLLO G. Identification and quantification of anthocyanins in the berries of Pistacia lenliscus L., Phillyrea latifolia L. and Rubia peregrina L. Innov. Food Sci. Emerg. Techn. 8, 360, 2007.
  • 12. WINKEL-SHIRLEY B. Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485, 2001.
  • 13. TAKOS A. M., JAFFÉ F. W., JACOB S. R., BOGS J., ROBINSON S. P., WALKER A. R. Light-induced expression of a MYB gene regulatesanthocyanin biosynthesis in red apples. Plant Physiol. 142, 1216, 2006.
  • 14. STEYN W. J., WAND S. J. E., HOLCROFT D. M., JACOBS G. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol. 55, 349, 2002.
  • 15. PENG M., HUDSON D., SCHOFIELD A., TSAO R., YANG R., GU H. Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. J. Exp. Bot. 59, 2933, 2008.
  • 16. YAMASAKI H., SAKIHAMA Y., IKEHARA N. Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H202. Plant Physiol. 115, 1405, 1997.
  • 17. GOULD K. S., MCKELVIE J., MARKHAM K. R. Do anthocyanins function as antioxidants in leaves? Imaging of H₂O₂ in red and green leaves after mechanical injury. Plant Cell Environ. 25, 1261, 2002.
  • 18. NEILL S. O., GOULD K. S. Anthocyanins in leaves: light attenuators or antioxidants? Funct. Plant Biol. 30, 865, 2003.
  • 19. HALE K. L., MCGRATH S. P., LOMBI E., STACK S. M., TERRY N., PICKERING I. J., GEORGE G. N., PILONSMITS E. A. H. Molybdenum sequestration in Brassica species. A role for anthocyanins?, Plant Physiol. 126, 1391, 2001.
  • 20. PRIOR R. L., WU X. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Res. 40, 1014, 2006.
  • 21. COHEN M. F., SAKIHAMA Y., TAKAGI Y. C., ICHIBA T., YAMASAKI H. Synergistic effect of deoxyanthocyanins from symbiotic fern Azolla spp. on hrm A gene induction in the cyanobacterium Nostoc punctiforme. MPMI. 15 875, 2002.
  • 22. POSMYK M. M., KONTEK R., JANAS K M. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotox. Environ. Safe. 72, 596, 2009.
  • 23. DAI L. P., XIONG Z. T., HUANG Y., LI M. J. Cadmiuminduced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environ. Toxicol. 21, 505, 2006.
  • 24. UHEDA E., KITOH S., SHIOMI N. Response of six Azolla species to transient high-temperature stress. Aquat. Bot. 64, 87,1999.
  • 25. ZHANG Z. Q., PANG X. Q„ YANG C, JI Z. L„ JIANG Y. M. Purification and structural analysis of anthocyanins from litchi pericarp. Food Chem. 84, 601, 2004.
  • 26. SHIMADA K., FUJIKAWA K, YAHARA K, NAKAMURA T. Antioxidative properties of xanthin on autoxidation of soybean oil in cyclodextrin emulsion. J. Agrie. Food Chem. 40, 945,1992.
  • 27. RE R„ PELLEGRINI N„ PROTEGGENTE A., PANNALA A., YANG M„ RICE-EVANS C. Antioxidant activity applying an improvend ABTS radical cation decolorization assay. Free Radie. Biol. Med. 26, 1231, 1999.
  • 28. OYAIZU M. Studies on products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44, 307, 1986.
  • 29. SHYU Y. S., LIN J. T., CHANG Y. T., CHIANG C. J., YANG D. J. Evaluation of antioxidant ability of ethanolic extract from dill (Anethum graveolens L.) flower. Food Chem. 115,515,2009.
  • 30. LAVID N., SCHWARTZ A., YARDEN O., TEL-OR E. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212, 323, 2001.
  • 31. SHI G.X., XU Q.S., XIE K.B., XU N., ZHANG X.L., ZENG X.M., ZHOU H.W., ZHU L. Physiology and ultrastructure of Azolla imbricata as affected by Hg²⁺ and Cd²⁺ toxicity. Acta Bot. Sin. 45, 437, 2003.
  • 32. SELA M., TEL-OR E., FRITZ E, HUTTERMANN A. Localization and toxic effects of cadmium, copper, and uranium in Azolla. Plant Physiol. 88, 30, 1988.
  • 33. DAI L.P., XIONG Z.T., MA H.H. Effects of cadmium on nitrogen metabolism in Azolla imbricate-Anabaena azollae symbiosis. Acta Ecolog. Sin. 29, 1629, 2009 [In Chinese],
  • 34. RAI P.K. Phytoremediation of Hg and Cd from industrial effluent using an aquatic free floating macrophyte Azolla pinnata. Int. J. Phytoremediat. 10, 430, 2008.
  • 35. SCHOR-FUMBAROV T., GOLDSBROUGH P.B., ADAM Z., TEL-OR E. Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress. Planta 223, 69, 2005.
  • 36. BADERSCHNEIDER B., LUTHRIA D., WATERHOUSE A. L., WINTERHALTER P. Antioxidants in white wine (cv Riesling): I. Comparison of different testing methods for antioxidant activity. Vitis 38, 127, 1999.
  • 37. KONG J. M., CHIA L. S., GOH N. K, CHIA T. F., BROUILLARD R. Analysis and biological activities of anthocyanins. Phytochemistry 64, 923, 2003.
  • 38. BAGCHI D., GARG A., KROHN R. L., BAGCHI M., BAGCHI B. J., BALMOORI J., STOHS S. J. Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. Gen. Pharmacol. 30, 771, 1998.
  • 39. RICE-EVANS C.A., MILLER N.J., PAGANGA G. Antioxidant properties of phenolic compounds. Trends Plant Sei. 2, 152,1997.
  • 40. DUAN X.W., JIANG Y.M., SU X.G., ZHANG Z.Q., SHI J. Antioxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chem. 101, 1365, 2007.
  • 41. KYTRIDIS V.P, MANETAS Y. Mesophyll versus epidermal anthocyanins as potential in vivo antioxidants: evidence I linking the putative antioxidant role to the proximity of oxyradical source. J. Exp. Bot. 57, 2203, 2006.
  • 42. BAE S.H., SUH H.J. Antioxidant activities of five different mulberry cultivare in Korea. LWT 40, 955, 2007.
  • 43. DU Q., ZHENG J., XU Y. Composition of anthocyanins in mulberry and their antioxidant activity. J. Food Compos. I Anal. 21, 390, 2008.
  • 44. SHIONO M., MATSUGAKI N., TAKEDA K. Phytochemistry: structure of the blue cornflower pigment, j Nature 436, 791,2005.
  • 45. NGO T., ZHAO Y. Stabilization of anthocyanins on thermally processed red D'Anjou pears through complexation ; and polymerization. LWT - Food Sci. 42, 1144, 2009.
  • 46. KONDO T., YOSHIDA K., NAKAGAWA A., KAWAI T., TAMURA H., GOTO T. Structural basis of blue-colour development in flower petals from Commelina communis. Nature 358, 515, 1992.
  • 47. BOULTON R. The copigmentation of anthocyanins and its j role in the color of red wine: A critical review. Am. J. Enol. Vitic. 52, 67, 2001.
  • 48. SELA M., FRITZ E., HUTTERMANN A., TEL-OR E. Studies on cadmium localization in the water fern Azolla. Physiol. Plantamm 79, 547,1990.
  • 49. HEATH S. M., SOUTHWORTHE D., D'ALLURA J. A. Localization of nickel in epidermal subsidiary cells of leaves of Thlaspi montanum var. sikiyouense (Brassicaceae) using j energy-dispersive X-ray microanalysis. Int. J. Plant Sei. 158, 184, 1997.
  • 50. KÜPPER H., ZHAO F., MCGRATH S. P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119, 305,1999.
  • 51. ALFENITO M. R., SOUER E., GOODMAN C. D., BUELL R., MOL J., KOES R., WALBOT V. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione stransferase. Plant Cell 10. 1135,1998.
  • 52. ASADA K. Production and scavenging of reactive oxygen species in.chloroplasts and their functions. Plant Physiol. 1 144, 391,2006.
  • 53. GLINKA S., BARTCZAK M., OLEKSIAK S., WOLSKA A., GABARA B., POSMYK M., JANAS K. Effects of anthocyanin-rich extract from red cabbage leaves on meristematic cells of Allium cepa L. roots treated with heavy metals. Ecotox. Environ. Safe 68, 343, 2007.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.