Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 17 | 5 |

Tytuł artykułu

Inheritance and phenotypic correlations of agronomic traits in grapevine offsprings

Warianty tytułu

Języki publikacji



The mode of inheritance and the degree of phenotypic correlation between some more important agronomic traits in two offsprings obtained by direct and reciprocal crossing of cultivars ‘Smederevka’ and ‘Gewurztraminer’ were investigated in this study. In 62 genotypes from direct crossing (Smederevka × Gewurztraminer) and 66 genotypes from reciprocal crossing (Gewurztraminer × Smederevka), the traits evaluated were as follows: time of bud burst, flowering time, ripening time, bunch weight, berry weight, grape yield, sugar content of must and total acidity of must. The genotypes of F₁ generation for the investigated traits were arranged into a number of categories by the OIV method. In both crossing combinations (direct and reciprocal) for most traits, the same mode of inheritance (partial dominance, dominance or heterosis) was determined. Differences in the mode of inheritance, depending on whether the parental varieties were used as a father or mother, were found only for ripening time (partial dominance and intermediate inheritance). The prevailing mode of inheritance established for most of studied traits, regardless of the crossing method, was negative heterosis. From all examined traits, a significant influence of maternal effect was determined for the inheritance of flowering time and ripening time. In both crossing combinations, statistically significant phenotypic correlations were found between some studied traits.

Słowa kluczowe








Opis fizyczny



  • Faculty of Agriculture, University of Belgrade, 11080 Belgrade-Zemun, Serbia
  • Ministry of Agriculture and Enviromental Protection, 11000 Belgrade, Serbia
  • Faculty of Agriculture, University of Belgrade, 11080 Belgrade-Zemun, Serbia
  • Center of Viticulture and Enology, 18000 Nis, Serbia
  • Faculty of Agriculture, University of Belgrade, 11080 Belgrade-Zemun, Serbia


  • Bayo-Canha, A., Fernández-Fernández, J.I., MartínezCutillas, A, Ruiz-García, L. (2012). Phenotypic segregation and relationships of agronomic traits in Monastrell × Syrah wine grape progeny. Euphytica, 186, 393–407.
  • Benéyei, F., Lörincz, A., Gácsi, T., Lukáscy, G. (2003). The results of the crossbreeding of the department of viticulture. Acta Hortic., 603, 697–699.
  • Bock, A., Sparks, T., Estrella, N., Menzel, A. (2011). Changes in the phenology and composition of wine from Franconia, Germany. Clim. Res., 50, 69–81.
  • Cindrić, P., Korać, N., Kovač, V. (1994). Sorte vinove loze. Prometej, Novi Sad.
  • Clark, J.R. (2010). Eastern United States table grape breeding. J. Am. Pomol. Soc., 64, 72–77.
  • Costantini, L., Battilana, J., Lamaj, F., Fanizza, G., Grando, M.S. (2008). Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol., 8, 38–54.
  • Costantini, L., Moreira, F.M., Zyprian, E., MartínezZapater, J.M., Grando, M.S. (2009). Molecular maps, QTL mapping and association mapping in grapevine. In: Grapevine molecular physiology and biotechnology, Roubelakis-Angelakis, K.A. (ed.), 2nd ed. Kluwer Academis Publishers, Dordrecht, 535–563.
  • Dalbó, M.A., Ye, G.N., Weeden, N.F., Steinkellner, H., Sefc, K.M., Reisch, B.I. (2000). A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome, 43, 333–340.
  • Doligez, A., Bouquet, A., Danglot, Y., Lahogue, F., Riaz, S., Meredith, C.P., Edwards, K.J., This, P. (2002). Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor. Appl. Genet., 105, 780–795.
  • Duchêne, E., Butterlin, G., Dumas, V., Merdinoglu, D. (2012). Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor. Appl. Genet., 124, 623–635.
  • Fanizza, G., Lamaj, F., Costantini, L., Chaabane, R., Grando, M.S. (2005). QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor. Appl. Genet., 111, 658–664.
  • Fatahi, R., Ebadi, A., Vezvaei, A., Zamani, Z., Ghanadha, M.R. (2004). Relationship among quantitative and qualitative characters in 90 grapevine (Vitis vinifera) cultivars. Acta Hortic., 640, 275–282.
  • Fernandez, L., Romieu, C., Moing, A., Bouquet, A., Maucourt, M., Thomas, M.R., Torregrosa, L. (2006). The grapevine fleshless berry mutation. A unique genotype to investigate differences between fleshy and nonfleshy fruit. Plant Physiol., 140, 537–547.
  • Firoozabady, E., Olmo, H.P. (1987). Heritability and correlation studies of certain quantitative traits in table grapes, Vitis spp. Vitis, 26, 132–146.
  • Fischer, B.M., Salakhutdinov, I., Akkurt, M., Eibach, R., Edwards, K.J., Töpfer, R., Zyprian, E.M. (2004). Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor. Appl. Genet., 108, 501–515.
  • Goldy, R.G. (1988). Variation in some yield determining components in muscadine grapes and their correlation to yield. Euphytica, 39, 39–42.
  • Gómez-Plaza, E., Gil-Muñoz, R., Hernández-Jiménez, A., López-Roca, J.M., Ortega-Regules, A., Martínez-Cutillas, A. (2008). Studies on the anthocyanin profile of Vitis vinifera intraspecific hybrids (Monastrell × Cabernet Sauvignon). Eur. Food Res. Tech., 227, 479–484.
  • Hadadinejad, M., Ebadi, A., Naghavi, M.R., Nikkhah, R. (2011). Genealogy and molecular diversity of Iranian grapevine progenies. J. Agric. Sci. Tech., 13, 1147–1161.
  • Jones, G.V., Davis, R.E. (2000). Climate influence on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic., 51, 249–261.
  • Leão, P.C. de S., Cruz, C.D., Motoike, S.Y. (2010). Genetic diversity of a Brazilian wine grape germplasm collection based on morphoagronomic traits. Rev. Bras. Frutic., 32, 1164–1172.
  • Liang, Z., Yang, C., Yang, J., Wu, B., Wang, L., Cheng, J., Li, S. (2009). Inheritance of anthocyanins in berries of Vitis vinifera grapes. Euphytica, 167, 113–125.
  • Liang, Z., Sang, M., Wu, B., Ma, A., Zhao, S., Zhong, G.Y., Li, S. (2012). Inheritance of anthocyanin content in the ripe berries of a tetraploid × diploid grape cross population. Euphytica, 186, 343–356.
  • Liu, H-F., Wu, B-H., Fan, P-G., Xu, H-Y., Li, S-H. (2007). Inheritance of sugars and acids in berries of grape (Vitis vinifera L.). Euphytica, 153, 99–107.
  • Lu, J., Schell, L., Ramming, D.W. (2000). Interspecific hybridization between Vitis rotundifolia and Vitis vinifera and evaluation of the hybrids. Acta Hortic., 528, 479–486.
  • Luo, S., He, P. (2004). The inheritances of fruit skin and must colors in a series of interspecific and intraspecific crosses between V. vinifera and the wild grape species native to China. Sci. Hortic., 99, 29–40.
  • Marguerit, E., Boury, C., Manicki, A., Donnart, M., Butterlin, G., Némorin, A., Wiedemann-Merdinoglu, S., Merdinoglu, D., Ollat, N., Decroocq, S. (2009). Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor. Appl. Genet., 118, 1261–1278.
  • Martínez-Zapater, J.M., Carmona, M.J., Díaz-Riquelme, J., Fernández, L., Lijavetzky, D. (2010). Grapevine genetics after the genome sequence: challenges and limitations. Aust. J. Grape Wine Res., 16, 33–46.
  • Mejía, N., Gebauer, M., Muñoz, L., Hewstone, N., Muñoz, C., Hinrichsen, P. (2007). Identification of QTLs for seedlessness, berry size, and ripening date in a seedless × seedless table grape progeny. Am. J. Enol. Vitic., 58, 499–507.
  • Milutinović, M., Nikolić, D., Avramov, L., Rakonjac, V. (2000). Recombination of some characteristics in F1 generation of grapevine. Acta Hortic., 528, 641–644.
  • Nikolić, D. (1997). Genetic variability of some important seedlings characters of the F1 generation at interspecies hybridization in grapevine. Rev. Res. Work Fac. Agric., 42, 117–128.
  • Nikolić, D. (2001). Nasleđivanje nekih osobina vinove loze u hibridnom potomstvu sorti Villard noir i Muskat hamburg. Arh. Poljopr. Nauke, 62, 5–13.
  • Nikolić, D. (2012). Oplemenjivanje vinove loze. Fleš, Zemun.
  • Nikolić, D., Milutinović, M., Rakonjac, V., Fotirić, M. (2009). Evaluation of resistance to low temperatures in promising interspecies grapevine hybrids. Acta Hortic., 827, 461–464.
  • OIV, (2009). Second edition of the OIV Descriptor list for grape varieties and Vitis species. Organisation International de la Vigne et du Vin, Paris.
  • Shiraishi, M., Fujishima, H., Chijiwa, H. (2010). Evaluation of table grape genetic resources for sugar, organic acid, and amino acid composition of berries. Euphytica, 174, 1–13.
  • Sinski, I., Dal Bosco, D., Pierozzi, N.I., Maia, J.D.G., Ritschel, P.S., Quecini, V. (2014). Improving in vitro induction of autopolyploidy in grapevine seedless cultivars. Euphytica, 196, 299–311.
  • Song, S., del Mar Hernández, M., Provedo, I., Menéndez, C.M. (2014). Segregation and associations of enological and agronomic traits in Graciano × Tempranillo wine grape progeny (Vitis vinifera L.). Euphytica, 195, 259–277.
  • Wei, X., Sykes, S.R., Clingeleffer, P.R. (2002). An investigation to estimate genetic parameters in CSIRO’s table grape breeding program 2. Quality characteristics. Euphytica, 128, 343–351.
  • Welter, L.J., Grando, M.S., Zyprian, E. (2011). Basics of grapevine genetic analysis. In: Genetics, genomics, and breeding of grapes, Adam-Blondon, A.F., Martínez-Zapater, J.M., Kole, C. (eds). 1st ed. Science Publishers, New Hampshire, 137–159.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.