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Abstract
Salt stress affects the development and growth of plants in various ways as a result of its 
effect on water relationships, photosynthesis, and nutrient absorption by physiologi-
cal and biochemical processes. Consequently, several researchers have increasingly 
studied the effect of plant growth promoting bacteria (PGPR) as promoters and 
enhancers under saline environment. The main goals of this study were to examine 
the manifested response of the broad bean plant under saline conditions and to 
evaluate the role of some Pseudomonas isolates in improving plant tolerance to salt 
stress. Three Pseudomonas strains were isolated (P1 and P7 from a saline soil and P15 
from a vineyard soil). These isolates were screened by salinity and used as inoculums 
in Vicia faba plants (OTONO variety) irrigated with two saline solutions (NaCl; 100 
and 150 mM L−1) and one without salinity. The results show that salinity decreased 
the fresh weight, total chlorophyll content, and the Na+/K+ ratio, but it increased 
proline accumulation in inoculated and noninoculated plants. The inoculation of 
V. faba plants with P1, P7, and P15 strains significantly increased the production 
of fresh biomass in the presence and absence of salt stress, and positively affected 
the accumulation of proline and the Na+/K+ ratio. The inoculation with bacterial 
strains increased the total chlorophyll content in plants at all salt treatment levels, 
especially the P1 strain that showed a significant effect.
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Introduction

Salinity is considered to be one of the main abiotic stresses in the Sahara region because 
it reduces the area of exploitable land by 1% to 2% yearly [1]. Over 800 million hectares 
of land are affected by salinity, which could drastically reduce agricultural productivity 
[2]. In addition, salinity reduces nutrient absorption by plants, particularly phosphate 
uptake [3]. Osmotic stress can also be induced by limiting water absorption in soil, and 
ionic stress resulting from high concentrations of potentially toxic salt ions in plant 
cells [4]. Saline stress affects several biochemical and metabolic processes in plants, 
including protein synthesis, photosynthesis, and lipid metabolism, therefore, growth and 
yields are reduced [5,6]. The accumulation of ions, such as sodium chloride, can alter 
many physiological activities [7], decrease productivity, and cause plant death [2].

Agricultural soils face great risks due to their excessive and irrational exploitation; 
salinity is among these risks, which represents a serious constraint for agriculture. 
Against these risks of phytotoxicity of salinity, many researchers have studied several 
strategies, such as the use of plant growth-promoting bacteria (PGPR or PGPB). PGPRs 
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can stimulate not only plant growth and yield, but also alleviate the effects of biotic or 
abiotic stresses [8]. They can also increase plant growth and aerial biomass, even under 
the toxic effect of metals [9–11], and facilitate the growth of plants in saline soils [4,12]. 
The increase in crop yields due to PGPRs is mainly attributed to the production of growth 
phytohormones as well as the solubilization of phosphate [13]. Several authors have 
reported the enhancing effect of plant–PGPR interactions using different bioinoculant 
bacterial strains, such as Azospirillum, Agrobacterium, Pseudomonas, and several strains 
of gram-positive Bacillus [14,15]. Inoculation with P. putida Rs198 may stimulate cotton 
growth and germination under salt stress conditions [16]. The strains P. trivialis 3Re27 
and P. extremorientalis TSAU20 have excellent root colonization capacity and promote 
plant growth. They also show antagonism to fungal plant pathogens, tolerance to salin-
ity, and ability to alleviate salt stress in peas, soybeans, wheat, cucumber, and tomato 
[17–19]. In the present study, the effect of salt stress on biomass, chlorophyll content, 
proline accumulation, and absorption of nutritional elements was examined. We also 
studied the effect of inoculation with selected Pseudomonas strains on the growth of 
plants and their tolerance to salt stress.

Material and methods

Soil sampling

Ten soil samples were taken from two types of potentially contaminated soil: saline 
soil from Metmar Relizan and vineyard soil from Wreiah Mostaganem, Algeria.

Isolation of Pseudomonas spp. strains

The isolation was carried out by the suspension dilution method described by Vidhy-
asekaran et al. [20]. The roots were first removed from the easily detachable soil, then 
1 g of soil adhering to the roots of each sample was recovered and placed in a series of 
1/10 dilution suspensions. Finally, the bacteria belonging to the genus Pseudomonas 
were isolated from the greenish-yellow fluorescent colonies after 48-h incubation [21] 
on King B medium, as described by King et al. [22]. Confirmation of the fluorescence 
of Pseudomonas strains was done either by naked eye or by using a UV lamp (366 nm), 
and therefore occurred after macroscopic and microscopic analyses.

Selection and identification of high-performance isolates

The strains of fluorescent Pseudomonas passed through three preselection tests of per-
formance: tolerance to salinity, and indole acetic acid (IAA) and pyoverdine production. 
Every isolate was incubated for 48 h in King B medium with different salinity levels: 
7%, 8%, 9%, and 10% NaCl. Then, the best performing isolates were examined for their 
ability to produce pyoverdine. We used the method described by Meyer and Abdallah 
[23] for the extraction and spectrophotometric characterization of pyoverdine, and 
the method described by Loper and Schroth [24] for characterizing IAA production 
in theses strains. The selected isolates were identified using the biochemical method 
of the API 20NE gallery.

Experiment of plantation

The experiment was carried out in a greenhouse at the Agronomy Workshop in Maz-
zagran, Abdelhamid Ibn Badis University in Mostaganem, Algeria (x: 35°53'05.79" N, 
y: 0°02'41.54" E) with an average temperature of 28°C by day and 23°C by night, and 
hygroscopy of 55% to 75%.

We used the seeds of Vicia faba OTONO. The seeds were germinated after disinfec-
tion with a 25% sodium hypochlorite solution for 15 min, and then transplanted into 
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pots containing 5 kg of mineralized and sterile sand. From colonies incubated for 24 h 
we prepared the inoculums of three strains selected for inoculation in tubes contain-
ing 3 mL nutrient broth, the tubes were incubated at 30°C for 24 h and then poured 
aseptically into 250 mL flasks containing 100 mL of nutrient broth and incubated at 
30°C for 48 h. The first inoculation was applied simultaneously with the transplanta-
tion of the germinated seeds by adding 120 mL of the bacterial suspension to each 
pot and the second inoculation was applied 4 weeks after transplantation. One week 
after transplantation, the pots were regularly irrigated with Hoagland solution [25]. 
From the fifth week after transplantation, and for a 3-week duration, the irrigation 
solutions (Hoagland solution) contained NaCl treatments at different concentrations: 
0 mM L−1, 100 mM L−1, and 150 mM L−1. We measured the total fresh weight of plants 
using a precision scale. The chlorophyll content was measured following the method of 
Francis et al. [26], the proline content following Bergman and Loxley [27], and the K+ 
and Na+ cations were measured using the method described by Lagerkvist et al. [28]. 
The experiment was conducted according to a completely randomized design with 
four replicates. STAT BOX v6.40, used to perform ANOVA based on Student–New-
man–Keuls test with a significance threshold of p = 0.05, and Microsoft Excel 2013 
was used for the graphics.

Results

Isolation, selection, and identification of Pseudomonas spp. strains

The macroscopic and microscopic analyzes of the isolates extracted from the rhizosphere 
revealed seven strains belonging to the genus Pseudomonas: P1, P6, and P7 from the 
saline soil and P11, P13, P14, and P15 from the vineyard soil. We chose P1, P7, and P15 
as high-performance strains from the seven isolates as screened by the performance test 
results shown in Tab. 1. According to the API 20NE gallery identification catalog, isolates 
P1 and P7 are similar to strains of P. fluorescens and P15 was assigned as P. putida.

Fresh weight

The results showed that salinity has an inversely proportional effect on the fresh weight 
of plants in the presence and absence of bacterial inoculation. Compared to the 0 mM 
L−1 dose, saline doses of 100 and 150 mM L−1 caused a biomass decrease of 6.73% and 
10.95%, respectively, for the noninoculated plants. Saline doses also decreased the biomass 
of inoculated plants, the P1 strain decreased by 0.95% and 13.86% for the 100 and 150 
mM L−1, respectively, 8.76% and 10.16% for the P7 inoculum, and 14.85% and 35.10% 

Tab. 1 Characterization of isolated bacterial strains.

Bacterial 
isolates

IAA 
production

Pyoverdine 
production

Test of resistance to different NaCl 
doses after 72 h

7% 8% 9% 10%

P1 ++ ++ ++ - - -
P6 - - - - - -
P7 ++ ++ ++ ++ ++ ++
P11 - + ++ - - -
P13 + + ++ - - -
P14 - + ++ - - -
P15 ++ ++ ++ ++ ++ +

Note: “-” means no production or growth; “+” means weak production or growth; “++” means 
abundant production or growth.
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for the P15 inoculum (Fig. 1). However, bacterial inoculation with each of the strains 
significantly increased (Tab. 2) the fresh weight of plants at all levels of saline treatment. 
The P1 inoculum increased the biomass at a rate of 45.61%, 54.63%, and 40.85% for 
the 0, 100, and 150 mM L−1 doses, respectively. The P7 inoculum caused an increase of 
31.51%, 28.66%, and 32.68% for the 0, 100, and 150 mmM L−1 treatments, respectively, 
and the rate of increase was 78.54%, 63.02%, and 30.13% for the P15 inoculum.

Total chlorophyll content (a + b)

The results of noninoculated plants showed an 18.39% increase in total chlorophyll 
at a saline dose of 100 mM L−1, whereas the application of a 150 mM L−1 saline dose 
caused a significant (p < 0.05) decrease of 21.94% compared to the nonsaline treatment 
(0 mM L−1) (Fig. 2). The results of the plants inoculated with P1 revealed that the effect 
of salinity on the total chlorophyll content was proportional to the saline concentration, 
with the 100 and 150 mM L−1 treatments causing an increase of 10.15% and 25.02%, 
respectively compared to the 0 mM L−1 treatment. In parallel, inoculation with the P1 
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Fig. 1 The effect of salinity and inoculation of Pseudomonas strains (P1, P7, 
P15) versus a control (SP) on fresh weight of Vicia faba plants.

Tab. 2 The effect of salinity and bacterial inoculation with Pseudomonas strains (P1, P7, and P15) on the fresh weight, proline 
content, chlorophyll content, and K+/Na+ ratio of Vicia faba.

Bacterial 
inoculum

NaCl treatment 
(mM L−1) Fresh weight (g)

Proline content 
(µM/100 mg DM)

Chlorophyll content 
(mg/g FM) K+/Na+ ratio

SP 0 21.938 ±4.87 def 0.161 ±0.019 c 0.736 ±0.05 cd 2.275 ±0.667 b

SP 100 20.46 ±1.301 ef 0.192 ±0.029 c 0.701 ±0.064 cd 1.029 ±0.177 c

SP 150 19.535 ±2.631 f 0.288 ±0.027 b 0.594 ±0.103 d 0.893 ±0.14 c

P1 0 31.943 ±2.051 bc 0.273 ±0.037 b 0.847 ±0.168 bc 2.101 ±0.313 b

P1 100 31.638 ±3.916 bc 0.281 ±0.022 b 0.933 ±0.07 bc 1.127 ±0.196 c

P1 150 21.515 ±3.805 bcde 0.353 ±0.012 a 1.109 ±0.166 a 1.119 ±0.081 c

P7 0 28.85 ±2.783 bcd 0.200 ±0.018 c 0.76 ±0.098 cd 2.874 ±0.295 a

P7 100 26.323 ±1.859 bcdef 0.251 ±0.038 b 0.775 ±0.134 cd 1.05 ±0.151 c

P7 150 25.92 ±2.953 bcdef 0.255 ±0.008 b 0.781 ±0.064 cd 0.68 ±0.146 c

P15 0 39.168 ±5.491 a 0.203 ±0.019 c 0.748 ±0.05 cd 2.938 ±0.345 a

P15 100 33.353 ±3.902 b 0.208 ±0.014 c 0.737 ±0.074 cd 2.024 ±0.115 b

P15 150 25.42 ±3.118 cdef 0.302 ±0.033 b 0.988 ±0.058 ab 0.868 ±0.196 c

SP – treatment without bacterial inoculation; DM – dry matter; FM – fresh matter. The SP treatment was not inoculated. Results are 
presented as the mean ± standard deviation; lowercase letters denote homogeneous groups.
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strain caused a significant elevation (Tab. 2) in total 
chlorophyll of 11.30%, 3.55%, and 78.28% for the 0, 
100, and 150 mM L−1 treatments.

For the inoculation with the P7 strain, the results 
showed that the accumulation of total chlorophyll 
in the inoculated plants is proportional to the sa-
line concentration applied, with a slight increase of 
1.97% and 2.76% induced by 100 and 150 mM L−1 
treatments, respectively. However, the effect of P7 
inoculation on total chlorophyll content was nega-
tively affected by the 0 and 100 mM L−1 treatments 
with a reduction of 0.13% and 13.980%, respectively, 
and for the 150 mM L−1 treatment, the content was 
increased by 31.48% compared to the control.

Plants inoculated with the P15 strain and stressed 
with a 100 mM L−1 saline dose had a 16.84% decrease 
in total chlorophyll. The 150 mM L−1 saline treat-
ment caused a 32.09% increase in total chlorophyll 
compared to the 0 mM L−1 treatment. In comparison 
with the results of the noninoculated plants, the P15 
inoculation decreased the total chlorophyll content by 
1.71% and 30.97% for 0 and 100 mM L−1 treatments, 
respectively, while total chlorophyll increased by 
66.33% for the 150 mM L−1 treatment.

Proline content in the aerial part

The results of the noninoculated samples showed that 
the effect of salinity on the accumulation of proline 
in the aerial part of the bean is proportional to the 
concentration of the saline treatment, whereas a 
significant increase (Tab. 2) of 255.90% and 19.25% 
was observed for the 150 and 100 mM L−1 saline 
doses, respectively, compared to the 0 mM L−1 dose 
(Fig. 3).

In the group of plants inoculated with the P1 
strain, the effect of salt stress on the proline content 

in the aerial part of the bean was proportional to the concentration of the saline treat-
ment, with proline content increases of 2.93% and 29.30% for the 100 and 150 mM L−1 
treatments, respectively, compared to the 0 mM L−1 treatment. Comparison of the results 
of this group with those of the noninoculated group revealed a significant increase of 
69.56% and 46.35% in the proline content for the 0 and 100 mM L−1 treatments, respec-
tively, whereas a decrease of 38.39% was observed for the 150 mM L−1 treatment.

The plants inoculated with the P7 strain displayed a proportional effect of salinity 
on the accumulation of proline in the aerial part of the bean. There was a significant 
increase of 25.5% and 27.5% (Tab. 2) in the proline content of the plants stressed with 
100 and 150 mM L−1 treatments, respectively, compared to the 0 mM L−1 dose. In com-
parison with noninoculated plants, the plants inoculated with the P7 strain showed an 
increase of 24.22% and 30.72% in the proline content for the 0 and 100 mM L−1 saline 
doses, respectively, and a decrease of 55.49% for the 150 mM L−1 saline dose.

The values of the proline content in the plants inoculated with the P15 bacterial strain 
indicated that the accumulation of proline was proportional to the saline concentration. 
The 100 and 150 mM L−1 treatments caused significant accumulation of proline content 
of 2.46% and 48.76%, respectively, compared to the 0 mM L−1 treatment. Comparing 
the results of the plants inoculated with the P15 strain with those not inoculated (SP), 
the effect of the P15 bacterial inoculum on the proline accumulation was a significant 
increase of 26.08% and 8.33% for the 0 and 100 mM L−1 treatments, respectively, and 
a decrease of 47.29% for the 150 mM L−1 treatment.
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Fig. 2 The effect of salinity and bacterial inoculation with Pseudo-
monas strains (P1, P7, and P15) on the total chlorophyll content of 
Vicia faba plants. SP is a control that was not inoculated.
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Fig. 3 The effect of salinity and bacterial inoculation of Pseudomonas 
strains (P1, P7, and P15) on proline content in Vicia faba plant. SP 
was not inoculated.
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K+/Na+ ratio

Compared with unstressed Vicia faba plants (treated with 0 mM L−1 solution), the 100 
and 150 mM L−1 saline doses significantly decreased the K+/Na+ ratio in the nonin-
oculated plants by 62.91% and 57%, respectively (Fig. 4). The results showed that the 
K+/Na+ ratio is inversely proportional to the saline concentrations, with the 100 and 
150 mM L−1 treatments causing a significant reduction (Tab. 2) of 46.35% and 46.73%, 
respectively, comparatively to the 0 mM L−1 treatment. In parallel, inoculation with the 
P1 strain was accompanied by a significant decrease of 24.28% and 6.20% in the K+/
Na+ ratio for the 0 and 150 mM L−1 saline doses, respectively; however, there was an 
increase of 9.52% for the 100 mM L−1 dose compared to noninoculated plants.

The results obtained showed that the K+/Na+ ratio in plants inoculated with P7 
is inversely proportional to the saline doses applied, with a considerable reduction 
of 63.46% and 76.33% for the 100 and 150 mM L−1 doses, respectively. Compared to 
noninoculated plant results, the effect of the P7 inoculation on the K+/Na+ ratio was 
positively demonstrated for the 0 and 100 mM L−1 treatments with a significant increase 
of 35.67% and 20.40% respectively, while the K+/Na+ ratio was reduced by 43% for the 
150 mM L−1 treatment.

In comparison with the results for the noninoculated plants, the P15 inoculation 
increased the K+/Na+ ratio by 5.87% and 96.69% for the 0 and 100 mM L−1 treatments, 
respectively. However, the K+/Na+ ratio decreased by 27.24% for the 150 mM L−1 treat-
ment. The effect of saline stress on the K+/Na+ ratio is inversely proportional to the 
concentration of the saline treatment, with a reduction of 31.10% and 70.45% in the 
K+/Na+ ratio observed for the 100 and 150 mM L−1 treatments, respectively, compared 
to the 0 mM L−1 dose.

Discussion

Fresh weight

The results obtained in the bean plants inoculated with the P1, P7, and P15 strains and 
those not inoculated revealed a reduction in fresh weight induced by the 100 and 150 
mM L−1 saline doses compared to the 0 mM L−1 nonsaline treatment. Huge reductions 
in growth are caused by salt concentrations in the irrigation solution [29]. Salt stress 
reduces the dry matter of roots, stems, leaves, and the leaf surface due to the direct 
and indirect effects of salt ion toxicity that cause soil–plant osmotic imbalance [30]. In 
response to salt stress detection, plants increase ethylene production [29,31–33]. Ethylene 
affects different vegetative growth phases in plants, leading to an overall reduction in 
growth [34], and it can inhibit the elongation of stems and plant roots [35,36].
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Fig. 4 The effect of salinity and bacterial inoculation with Pseudomonas 
strains (P1, P7, and P15) on the K+/Na+ ratio of Vicia faba plants. The 
SP treatment was not inoculated.
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Our results also show that inoculation with the P1, P7, and P15 strains significantly 
increased plant growth under both saline and nonsaline conditions. Inoculation of 
stressed plants with bacteria containing ACC (1-aminocyclopropane-1-carboxylate)-
deaminase may reduce ethylene concentration [29]. Many PGPRs produce the enzyme 
ACC-deaminase and metabolize ACC, the precursor for ethylene synthesis of plants, 
thereby reducing the inhibition of root growth by stress-induced ethylene [37–39]. 
Pseudomonas extremorientalis TSAU20 is able to reduce salt stress in wheat grown 
in saline soil [18]; the improvement effect of PGPRs on plant growth under saline 
conditions has been demonstrated in different species of plants such as tomato, pepper, 
canola, beans, and lettuce [12,40–43]. Pseudomonas putida Rs-198 secrete IAA, which 
enhances plant growth, and alleviates the effect of growth inhibitors by decreasing the 
abscisic acid (ABA) content of plants [44–46].

However, we observed a proportional reduction in the fresh weight of inoculated 
plants with increased saline concentration, indicating that salinity has inhibitory ef-
fects on the development of nodulation and colonization of inoculation strains. Several 
studies have proven the inhibitory effect of salt stress on the association of plants with 
symbiotic bacteria. Salt stress inhibits the growth, nodulation, and nitrogen fixation of 
several legumes, such as soybean (Glycine max) and common bean (Phaseolus vulgaris) 
[47,48]. An explanation for reduced legume growth may be that salt stress causes failure 
of the infection and nodulation processes [49].

Chlorophyll content

According to the results, an optimum content of total chlorophyll was found in the 
noninoculated Vicia faba plants treated with the 100 mM L−1 saline dose, whereas the 
150 mM L−1 saline treatment reduced the total chlorophyll content. Salinity decreases 
photosynthesis and degrades chlorophyll and chlorophyll–protein complexes [50,51]; 
chlorophyll concentrations were significantly reduced by salinity treatments due to 
the suppression of the specific enzymes responsible for the synthesis of photosynthetic 
pigments [52,53], or the antagonistic effect of Na+ on the absorption of minerals (for 
example, Mg) entering into the synthesis of photosynthetic pigments, thereby reducing 
the chlorophyll concentration [51,54].

The chlorophyll content in the plants inoculated with the P1, P7, and P15 strains under 
salt stress are higher than that in the nonsaline treatment. The inoculated plants under 
salt stress reached higher levels of photosynthetic capacity than that of the unstressed 
plants. Compared with the noninoculated plants, P1 inoculation showed an increase 
in chlorophyll under saline and nonsaline conditions; chlorophyll (a) increased in the 
150 mM L−1 stressed plants inoculated with the P7 and P15 strains. Our results agree 
with several previous studies reporting that bacterial inoculation increases chlorophyll 
in leaves [55–57].

Proline content

For the present study, the results obtained show that proline accumulates in Vicia faba 
plants in proportion to the NaCl treatment concentrations, as recorded in the presence 
and absence of the P1, P7, and P15 bacterial inoculation, there was a higher proline 
content in plants exposed to salt stress than in plants not stressed by salinity. These 
results are consistent with those of several authors, who observed an increase in proline 
[58,59]. The accumulation of proline in plants is an indicator of general stress tolerance 
or salinity tolerance, as it maintains osmotic adjustment and protects intracellular 
macromolecules against dehydration and also serves as a hydroxyl radical scavenger 
[60,61]. Proline accumulation is one of the most frequently reported modifications 
induced by hydric and salt stress to plants and is often considered to be involved in 
stress resistance mechanisms. Proline accumulation is a sensitive physiological index of 
plant response to salt stress and other stress [62]. It is also one of the adaptive strategies 
triggered by the plant against environment constraints [63]. Under salt stress, plants 
accumulate some organic components (such as proline and soluble sugar) and inorganic 
ions in order to maintain higher osmotic adjustment [64].
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It has also been found that in inoculated plants, proline is higher than in noninoculated 
plants, under saline a nonsaline treatment, which explains the effect of bacterial inocula-
tion on proline accumulation and consequently on plant tolerance to different stresses. 
The leaf proline levels increased in response to inoculation with microorganisms [65]. 
Proline accumulation was significantly lower for noninoculated plants and significant 
proline accumulation was found in the leaves of plants inoculated with Piriformospora 
indica. Azospirillum can also accumulate proline and glutamate in response to NaCl 
and limit the influx of Na+ in roots [66]. An increase in proline and total soluble sugars 
was observed in plants treated with PGPRs, which have probably led to a significant 
contribution to the promotion of plant growth under salt stress, by increasing several 
metabolic defense strategies [65], and several authors have confirmed the effect of 
bacterial inoculation on proline increase under saline conditions [67–69].

Na+/K+ ratio

Salinity causes an increase in Na+ concentration and a decrease in K+, which reduces 
the K+/Na+ ratio in proportion with the increase in salt stress; the reduction in K+ con-
centration in plants under salt stress may increase the deleterious effects of salinity on 
growth and yield [70]. High NaCl concentrations in the soil solution may decrease the 
K+/Na+ and Ca2+/Na+ ratios in plants, which would then be more susceptible to osmotic 
and specific ion alterations as well as nutritional disturbances, which consequently 
lead to yield and quality reduction [71,72]. Salinity increased foliar Na+ and Ca2+ con-
centrations and decreased K+ in the leaves of lettuce [4]. Na+ exclusion and K+ influx 
are the most important plant strategies for relieving salt stress [73–75]. These results 
are consistent with those obtained in the present experiment, where we observed that 
saline treatments induce a significant increase in Na+ concentration and a decrease in 
K+ in inoculated and noninoculated plants; a significant reduction in the K+/Na+ ratio 
under saline treatments in the presence and absence of inoculation was also noted.

Compared with noninoculated plants, inoculation with the P1, P7, and P15 strains 
caused a decrease in Na+ concentration in plants treated with 0 and 100 mM L−1 NaCl 
solutions, and therefore a reduction in the K+/Na+ ratio. This indicates an improved 
effect of inoculation with the selected bacterial strains on the reduction in the salt 
stress effect, this osmotic regulation is achieved by reducing the level of Na+ toxic 
ion availability in plants. Inoculation with exopolysaccharide-producing bacteria can 
reduce Na+ influx in plant roots [76]. Inoculation with Bacillus subtilis GB03 could 
also improve the level of salt tolerance in Arabidopsis thaliana by regulating the HKT1 
potassium transporter [77]. Inoculation with PGPR strains helps to relieve salt stress 
by the induction of certain genes and polypeptides, or regulation of the HKT1 potas-
sium transporter [78]; PGPRs affect HKT1, which has an effect on the adjustment of 
the Na+ and K+ levels, it has also been suggested that PGPR increases the uptake of 
mineral ions by plants, via proton pump ATPase stimulation [79]. Ashraf et al. [76] 
found that Na+ accumulation in wheat decreases in the presence of PGPRs, improved 
exopolysaccharide (EPS) production by PGPRs can help plants tolerate salt stress by 
reducing the availability of Na+ ions at the root level. A decrease in Na+ availability can 
alleviate salt stress for wheat and cotton plants [76,80,81].

Conclusion

This study aimed to investigate the role of rhizobacterial Pseudomonas inoculation in 
the clearance of salt stress effects on the growth and physiology of V. faba. The results 
showed that the 100 and 150 mM L−1 saline treatments induced a regression in the 
fresh weight of V. faba plants inoculated with P1, P7, and P15 and the noninoculated 
plants. In the absence of bacterial inoculation, the optimum content of total chloro-
phyll releasable is linked to treatment with 100 mM L−1 of NaCl, whereas treatment 
with 150 mM L−1 reduced the total chlorophyll content. Proline also accumulates in 
V. faba plants in proportion to the saline concentration in the presence and absence 
of bacterial inoculation. Saline treatments induced a significant increase in Na+ and 
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a decrease in K+ in inoculated and noninoculated plants. We also noted a significant 
reduction in the K+/Na+ ratio under saline treatments in the presence and absence 
of bacterial inoculation. However, inoculation with strains P1, P7, and P15 caused a 
decrease in Na+ in plants treated with 0 and 100 mM L−1 NaCl, this increased the K+/
Na+ ratio, indicating that inoculation by selected bacterial strains improves the tolerance 
of plants to salinity. This study is provides insights into the effect of salinity on plant 
growth and its complications.
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Oddziaływanie niektórych bakterii ryzosferowych Pseudomonas na wzrost i parametry 
fizjologiczne roślin bobu (Vicia faba) w warunkach zasolenia

Streszczenie

Oddziaływanie stresu solnego na wzrost i rozwój roślin jest zróżnicowane. Wynika bowiem 
zarówno z wpływu zasolenia na potencjał wodny, fotosyntezę i pobieranie składników pokar-
mowych jak i zmian w procesach fizjologicznych i biochemicznych. Oddziaływanie bakterii 
promujących wzrost roślin (PGPR), szczególnie jako czynników wzmacniających wzrost i rozwój 
roślin w warunkach zasolenia, należy do coraz częściej podejmowanych tematów badawczych. 
Głównym celem badań było określenie reakcji roślin bobu w warunkach zasolenia i ocena roli 
wyselekcjonowanych izolatów Pseudomonas spp. w poprawie tolerancji roślin na stres solny. 
W badaniach wykorzystano trzy izolaty Pseudomonas spp. (otrzymane odpowiednio: P1 i P7 
z gleby zasolonej i P15 z gleby spod uprawy winorośli). Rośliny Vicia faba (OTONO) inokulo-
wano wymienionymi izolatami, a następnie podlewano roztworem NaCl w dwóch stężeniach, 
tj. 100 i 150 mM L−1 oraz wodą bez NaCl. Wykazano, że zasolenie obniżyło wielkość świeżej 
masy roślin, całkowitą zawartość chlorofilu i stosunek jonów Na+/K+, ale zwiększyło akumulację 
proliny zarówno w inokulowanych jak i nieinokulowanych roślinach. Traktowanie roślin V. faba 
izolatami P1, P7 i P15 znacznie zwiększyło produkcję świeżej biomasy w obecności i przy braku 
stresu solnego oraz pozytywnie wpłynęło na akumulację proliny i stosunek Na+/K+. Rośliny 
inokulowane zawiesiną bakterii Pseudomonas spp. charakteryzowały się większą całkowitą 
zawartością chlorofilu we wszystkich kombinacjach doświadczalnych z użyciem roztworu soli 
w porównaniu do kombinacji kontrolnej. Spośród badanych Pseudomonas spp. izolat P1 był 
najbardziej efektywny.
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