PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 5 |

Tytuł artykułu

Anatomical changes induced by increasing NaCl Salinity in three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Nitraria retusa and Atriplex halimus (xero-halophytes) plants were grown in the range 0–800 mM NaCl while Medicago arborea (glycophyte) in 0–300 mM NaCl. Plants were harvested after 120 days of salt-treatment. The present study was designed to study the effect of salinity on root, stem and leaf anatomy, water relationship, and plant growth in greenhouse conditions. Salinity induced anatomical changes in the roots, stems and leaves. The cuticle and epidermis of N. retusa and A. halimus stems were unaffected by salinity. However, root anatomical parameters (root cross section area, cortex thickness and stele to root area ratio), and stem anatomical parameters (stem cross section area and cortex area) were promoted at 100–200 mM NaCl. Indicating that low to moderate salinity had a stimulating effect on root and stem growth of these xero-halophytic species. At higher salinities, root and stem structures were altered significantly, and their percentages of reduction were higher in A. halimus than in N. retusa whereas, in M. arborea, they were strongly altered as salinity rose. NaCl (100–300 mM) reduced leaf water content by 21.2–56.2% and specific leaf area by 51–88.1%, while increased leaf anatomical parameters in M. arborea (e.g. increased thickness of upper and lower epidermis, palisade and spongy mesophyll, entire lamina, and increased palisade to spongy mesophyll ratio). Similar results were evidenced in A. halimus leaves with salinity exceeding 100 mM NaCl. Leaves of N. retusa were thinner in salt-stressed plants while epidermis thickness and water content was unaffected by salinity. The size of xylem vessel was unchanged under salinity in the leaf’s main vein of the three species while we have increased number in M. arborea leaf main vein in the range of 200–300 mM NaCl. A longer distance between leaf vascular bundle, a reduced size and increased number of xylem vessel especially in stem than in root vascular system was evidenced in M. arborea treated plants and only at (400–800 mM) in the xero-halophytic species. The effects of NaCl toxicity on leaf, stem and root ultrastructure are discussed in relation to the degree of salt resistance of these three species. Our results suggest that both N. retusa and A. halimus show high tolerance to salinity while M. arborea was considered as a salt tolerant species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

5

Opis fizyczny

p.947-960,fig.,ref.

Twórcy

  • Laboratoire de Physiologie Vegetale, Institut Superieur Agronomique de Chott Meriem (ISA-CM), BP 47, 4042 Chott-Meriem (Sousse), Tunisia
autor
  • Laboratoire de Physiologie Vegetale, Institut Superieur Agronomique de Chott Meriem (ISA-CM), BP 47, 4042 Chott-Meriem (Sousse), Tunisia
autor
  • Laboratoire de Biologie Vegetale, Institut Superieur Agronomique de Chott Meriem (ISA-CM), BP 47, 4042 Chott-Meriem (Sousse), Tunisia

Bibliografia

  • Abdelly C, Zid E, Hajji M, Grignon C (1995) Biomass production and nutrition of Medicago species associated to halophytes on the edge of a sebkha in Tunisia. In: Chouk-Allah, Hamdy, Malcolm (eds) Halophytes and Biosaline Agriculture. Dekker Inc, New York, pp 313–324
  • Alegre J, Navarrete L, Ceresuela JL, Hornero J (1991) La alfalfa leñosa de Creta (Medicago strasseri, Matthäs. Greuter y Risse) primeros datos acerca de su potencial interés forrajero, XXXI Reunión Científica de la Sociedad Española para el Estudio de los Pastos, Murcia, pp 76–80
  • Bajji M, Kinet JM, Lutts S (1998) Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Sci 137:131–142. doi:10.1016/S0168-9452 (98)00116-2
  • Barhoumi Z, Djebali W, Chaïbi W, Abdelly C, Smaoui A (2007) Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. J PlantRes 120:529–537. doi:10.1007/s10265-007-0094-z
  • Bongi G, Loreto F (1989) Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves. Plant Physiol 90:1408–1416. doi: 10.1104/pp.90.4.1408
  • Çavuşoğlu K, Kılıç S, Kabar K (2007) Some morphological and anatomical observations during alleviation of salinity (NaCl) stress on seed germination and seedling growth of barley by polyamines. Acta Physiol Plant 29:551–557. doi:10.1007/s11738-007-0066-x
  • Çavuşoğlu K, Kılıç S, Kabar K (2008) Effects of some plant growth regulators on leaf anatomy of radish seedlings grown under saline conditions. J Appl Biol Sci 2:47–50
  • Choat B, Ball MC, Luly JG, Holtum JAM (2005) Hydraulic architecture of deciduous and evergreen dry forest tree species from north-eastern Australia. Trees (Berl) 19:305–311. doi: 10.1007/s00468-004-0392-1
  • Colmer TD, Epstein E, Dvorak J (1995) Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salttolerant wheat X Lophopyrum elongatum (Host) A. Love Amphiploid. Plant Physiol 108:1715–1724
  • Curtis PS, Lauchli A (1987) The effect of moderate salt stress on leaf anatomy in Hibiscus cannabinus (Kenaf) and its relation to leaf area. Am J Bot 74:538–542. doi:10.2307/2443833
  • De Araújo SAM, Silveiral JAG, Almeidal TD, Rochal IMA, Morais DL, Viégas RA (2006) Salinity tolerance of halophyte Atriplex nummularia L. grown under increasing NaCl levels. R Bras Eng Agríc Ambiental 10:848–854
  • Debez A, Hamed KB, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant Soil 262:179–189. doi:10.1023/B:PLSO. 0000037034.47247.67
  • Debez A, Saadaoui D, Ramanib B, Ouerghi Z, Koyro HW, Huchzermeyer B, Abdelly C (2006) Leaf H⁺-ATPase activity and photosynthetic capacity of Cakile maritima under increasing salinity. Environ Exp Bot 57:285–295. doi:10.1016/j.envexpbot. 2005.06.009
  • Dengler NG, Nelson T (1999) Leaf structure and development in C4 plants. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 133–172
  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190. doi:10.1146/annurev.pp.31.060180.001053
  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701
  • Hajibagheri MA, Yeo AR, Flowers TJ (1985) Salt tolerance in Suaeda maritima (L.) Dum.: fine structure and ion concentrations in the apical region of roots. New Phytol 99:331–343. doi:10.1111/j.1469-8137.1985.tb03661.x
  • Heneidy SZ (1996) Palatability and nutritive value of some common plant species from the Aqaba Gulf area of Sinai, Egypt. J Arid Environ 34:115–123. doi:10.1006/jare.1996.0097
  • Hoagland DR, Amon DI (1950) The water culture method for growing plants without soil. In: Circular No. 347, University of Calif. Agric. Exp. Stn, Berkeley, Canada, pp 1–39
  • Hu Y, Schmidhalter U (2001) Reduced cellular cross-sectional area in the leaf elongation zone of wheat causes a decrease in dry weight deposition under saline conditions. J Plant Physiol 28:165–170
  • Hu Y, Fromm J, Schmidhalter U (2005) Effect of salinity on tissue architecture in expanding wheat leaves. Planta 220:838–848. doi: 10.1007/s00425-004-1401-8
  • Huang J, Redmann RE (1995) Responses of growth, morphology, and anatomy to salinity and calcium supply in cultivated and wild barley. Can J Bot 73:1859–1866. doi:10.1139/b95-198
  • Hwang YH, Chen SC (1995) Anatomical responses in Kandelia candel (L.) druce seedlings growing in the presence of different concentrations of NaCI. Bot Bull Acad Sin 36:181–188
  • Isla R, Agragues R, Royo A (1998) Validity of various physiological traits as screening criteria for salt tolerance in barley. Field Crops Res 58:97–107. doi:10.1016/S0378-4290(98)00088-4
  • Joly RJ (1989) Effect of sodium chloride on the hydraulic conductivity of soybean root system. Plant Physiol 91:1262–1265. doi: 10.1104/pp.91.4.1262
  • Kiliç S, Çavuşoğlu K, Kabar K (2007) Effects of 24-epibrassinolide on salinity stress induced inhibition of seed germination, seedling growth and leaf anatomy of barley. Suleyman Demirel Univ Fac Arts Sci J Sci 2:41–52
  • Klee HJ, Estelle M (1991) Molecular genetic approaches to plant hormone biology. Annu Rev Plant Physiol Mol Biol 42:529–551. doi:10.1146/annurev.pp.42.060191.002525
  • Lauchli A, Epstein E (1990) Plant responses to saline and sodic conditions. In: Tanji KK (ed) Agricultural salinity assessment and management. ASCE manuals and reports on engineering practice No. 71. Soc Civil Eng, New York, pp 113–137
  • Le Houerou HN (2000) Utilization of fodder trees and shrubs in the arid and semiarid zones of west Asia and North Africa. Arid Soil Res Rehabil 14:101–135. doi:10.1080/089030600263058
  • Lev-Yadun S, Aloni R (1995) Differentiation of the ray system in woody plants. Bot Rev 61:45–84. doi:10.1007/BF02897151
  • Longstreth DJ, Nobel PS (1979) Salinity effects on leaf anatomy. Plant Physiol 63:700–703. doi:10.1104/pp.63.4.700
  • Loreto F, Harley PC, Di Marco G, Sharkey TD (1992) Estimation of the mesophyll conductance to CO₂ flux by three different methods. Plant Physiol 98:1437–1443. doi:10.1104/pp.98.4.1437
  • Medina E, Francisco M (1997) Osmolality and delta-13C of leaf tissue of mangrove species from environments of contrasting rainfall and salinity. Estuar Coast Shelf Sci 45:337–344. doi: 10.1006/ecss.1996.0188
  • Moghaieb REA, Saneoka H, Fujita K (2004) Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci 166:1345–1349. doi:10.1016/j.plantsci.2004.01.016
  • Mozafar A, Goodin JR (1970) Vesiculated hairs: a mechanism for salt tolerance in Atriplex halimus L. Plant Physiol 45:62–65. doi: 10.1104/pp.45.1.62
  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x
  • Osmond CB, Bjorkman O, Anderson DJ (eds) (1980) Physiological processes in plant ecology. Springer, Berlin
  • Popp M (1995) Salt resistance in herbaceous halophytes and mangroves. In: Behnke HD, Luttge U, Esser K, Kadereit JW, Runge M (eds) Progress in botany. Springer, Berlin, pp 416–429
  • Rabhi M, Barhoumi Z, Ksouri R, Abdelly C, Gharsalli M (2007) Interactive effects of salinity and iron deficiency in Medicago ciliaris. C R Biol 330:779–788. doi:10.1016/j.crvi.2007.08.007
  • Reinoso H, Sosa L, Ramírez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J Bot 82:618–628. doi:10.1139/b04-040
  • Reinoso H, Sosa L, Reginato M, Luna V(2005) Histological alterations induced by sodium sulfate in the vegetative anatomy of Prosopis strombulifera (Lam.) Benth. World J Agric Sci 1:109–119
  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370. doi:10.1111/j.1469-8137.2004.00974.x
  • Serrato Valenti G, Ferro M, Ferraro D, Riveros F (1991) Anatomical changes in Prosopis tamarugo Phil. seedlings growing at different levels of NaCl salinity. Ann Bot (Lond) 68:47–53
  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:76–119
  • Shannon MC, Grieve CM, François LE (1994) whole plant response to salinity In: Wilkinson RE, Dekker M (eds) Plant environment interaction, New York, pp 199–244
  • Shennan C, Hunt R, Macrobbie EAC (1987) Salt tolerance in Aster tripolium L. I. the effect of salinity on growth. Plant Cell Environ 10:59–65. doi:10.1111/j.1365-3040.1987.tb02080.x
  • Sibole JC, Cabot C, Poschenrieder C, Barceló J (2003) Ion allocation in two different salt-tolerant Mediterranean Medicago species. J Plant Physiol 160:1361–1365. doi:10.1078/0176-1617-00811
  • Sibolel JV, Cabot C, Poschenrieder C, Barceló J (2005) Efficient leaf ion partitioning, an overriding condition for abscisic acidcontrolled stomatal and leaf growth responses to NaCl salinization in two legumes. J Exp Bot 54:2111–2119
  • Sobrado MA (2005) Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica 43:217–221. doi:10.1007/s11099-005-0036-8
  • Sobrado MA (2007) Relationship of water transport to anatomical features in the mangrove Laguncularia racemosa grown under contrasting salinities. New Phytol 173:584–591. doi:10.1111/ j.1469-8137.2006.01927.x
  • Sperry JS, Tyree MT (1990) Water-stress-induced xylem embolism in three species of conifers. Plant Cell Environ 13:427–436. doi:10.1111/j.1365-3040.1990.tb01319.x
  • Strogonov BP (1962) Physiological basis of salt tolerance of plants. Israel program for Scientific Translations, Jerusalem. Translated from Russian, 1964
  • Syvertsen JP, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD (1995) On the relationship between leaf anatomy and CO₂ diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ 18:149–157. doi:10.1111/j.1365-3040.1995.tb00348.x
  • Tyree MT, Davies SD, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction. IAWA J 15:335–360
  • Vijayan K, Chakraborti SP, Ercisli S, Ghosh PD (2008) NaCl induced morpho-biochemical and anatomical changes in mulberry (Morus spp.). Plant Growth Regul 56:61–69. doi:10.1007/s10725-008-9284-5
  • Waisel Y (1972) Biology of halophytes. Academic Press, New York
  • Zeng L, Shannon MC (2000) Effect of salinity on grain yield and yield components of rice at different seedling densities. Agron J 92:418–423
  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71. doi: 10.1016/S1360-1385(00)01838-0

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2aa56404-a1b5-4b21-a984-3bbdcc76a88c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.