Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 3 |

Tytuł artykułu

Epiphytic lichens as bioindicators of air pollution by heavy metals in an urban area (northern Poland)

Treść / Zawartość

Warianty tytułu

Języki publikacji



The capability of accumulating lead (Pb), zinc (Zn), nickel (Ni), cooper (Cu), manganese (Mn) and iron (Fe) by tree lichen species was compared. Samples of lichens were taken in the autumn of 2013, from Betula pendula Roth, Fraxinus excelsior L., Acer platanoides L., Acer Pseudoplatanus L., Populus sp. trees and other broad-leaved trees growing within the city limits of Słupsk. The sampling stations were located in housing estates, green urban parks, near streets with heavy traffic and close to industrial plants. The aim of the study was to evaluate the pollution of the municipal environment of Słupsk with selected heavy metals using for this purpose thalli of three lichen species: Hypogymnia physodes, Parmelia sulcata and Xanthoria parietina, and to compare their accumulative properties. The heavy metal content in lichens was determined by atomic absorption spectrometry. The highest concentration of heavy metals was discovered in lichens collected in the city centre, while the lowest concentrations were found in parks and green areas. The largest quantities of Ni and Pb were accumulated by the lichen species H. physodes, most Zn and Fe accumulated in the lichen X. parietina, whereas Mn accumulated in similar amounts in all the tested species. A strong direct proportional relationship between the content of Zn and Fe, Fe and Cu, Zn and Cu in thalli of lichens was revealed. Some similarity between the Pb-Cu and Pb-Fe correlations was found as well as that of Pb-Mn in thalli of P. sulcata and X. parietina, along with a series of statistically significant differences between the examined species of lichen related to pH and the volume of accumulated heavy metals in thalli. The most significant differences in the content of heavy metals in thalli assessed in series of pairwise comparisons including (i) H. physodes vs P. sulcata, (ii) P. sulcata vs X. parietina and (iii) H. physodes vs X. parietina were found for (i') Pb, Cu and Fe, (ii') Ni and (iii') Pb, Ni, Cu and Fe, respectively.

Słowa kluczowe








Opis fizyczny



  • Environmental Chemistry Research Unit, Institute of Biology and Environmental Protection, Pomeranian Academy University in Slupsk, Arciszewskiego 22b St., 76-200 Slupsk, Poland
  • Botany and Plant Protection Unit Pomeranian, Academy University in Slupsk, Slupsk, Poland
  • Environmental Chemistry Research Unit, Pomeranian Academy University in Slupsk, Slupsk, Poland


  • Bargagl i R., Monaci F., Borghini F., Bravi F., Agnorell i C. 2002. Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environ. Pollut., 116: 279-287.
  • Bennet J.P. 1995. Abnormal chemical element concentration lichens of Isle Royale National Park. Environ. Exp. Bot., 95(3): 25-277.
  • Bargagl i R., Nimis P.L. 2002. Guidelines for the use of epiphytic lichens as biomonitors of atmospheric deposition of trace elements. In: Monitoring with Lichens–Monitoring Lichens. Nimis P.L., Scheidegg er C., Wolseley P.A. (Eds.). Kluwer Academic Publishers, 295-299.
  • Bettinell i M., Spezia S., Bizzarri G. 1996. Trace elements determination in lichens by ICP-MS, Atom. Spectrosc., 17: 133-141.
  • Białońska D., Dayan F.E., 2005. Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. J. Chem. Ecol., 31(12): 2975-2991.
  • Bojko A., Bylińska E., Jezierski A. 2004. Determination of the degree of degradation of chlorophyll in epiphytic lichen thalli Hypogymnia physodes (L.) Nyl. by extraction with DMSO. Zesz. Probl. Nauk Rol., 501: 51-59. (in Polish)
  • Conti M.E., Tudino M., Stripeikis J., Cecchetti G. 2004. Heavy metal accumulation in the lichen Evernia prunastri transplanted at urban, rural and industrial sites in Central Italy. J. Atm. Chem., 49: 83-94.
  • Culicov O.A., Yurukova L. 2006. Comparison of element accumulation of different moss- and lichen- bags, exposed in the city of Sofia (Bulgaria). J. Atmos. Chem., 55: 1-12.
  • Czarnota P. 1995. The content of micro- and macroelements in thalli Hypogymnia physodes in Gorce National Park - An attempt at lichenoindication. Parki Nar. Rezer. Przyr., 14(3): 69-88. (in Polish)
  • Damps K., Zarembski A., Macczak Z. 2013. An annual assessment of air quality in Pomeranian voivodship. Report for 2013. Available at oceny/op13.pdf (in Polish)
  • Demiray A.D., Yolcubal I., Akyol N.H., Çobanoģlu G. 2012. Biomonitoring of airborne metals using the lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecol. Indicat., 18: 632-644. DOI: 10.1016/j.ecolind.2012.01.024
  • Demirbas A. 2004. Trace elements concentrations in ashes from various types of lichen biomass species. Energy Sources, 26: 499-506.
  • Dzubaj A., Backor M., Tomko J., Peli E., Tuba Z. 2008. Tolerance of the lichen Xanthoria parietina. Ecotox. Environ. Saf., 70(2): 319-326. DOI: 10.1016/j.ecoenv.2007.04.002
  • Eğill i (Ölmez) E., Topcuoğlu S., Kut D., Kirbaşoğlu Ç., Esen N. 2003. Heavy metals and radionuclides in lichens and mosses in Thrace, Turkey. Bull. Environ. Contamin. Toxicol., 70: 502-508.
  • Ermakova E.V., Frontasyeva M.V., Pavlov S.S., Povtoreiko E.A., Steinnes E., Cheremisina Ye N. 2004. Air pollution studies in Central Russia (Tver and Yaroslavi Regions) using the moss biomonitoring technique and neutron activation analysis. J. Atmos. Chem., 49: 549-561.
  • Gałuszka A. 2005. The chemistry of soils, rocks and plant bioindicators in three ecosystems of the Holy Cross Mountains, Poland. Environ. Monit. Assess., 110: 55-70.
  • Haas J.R., Bailey E.H., Purvis O.W. 1998. Bioaccumulation of metals by lichens: Uptake of aqueous uranium by Peltigera membranacea as a function of time and pH. Amer. Mineral., 83: 1494-1502.
  • Izydorek I., Zduńczyk A. 2007. Lichen species composition of the city of Slupsk, in West Pomerania. Słupskie Pr. Biol., 4: 21-26. (in Polish)
  • Jóźwiak M. 2012. Macroscopic changes of Hypogymnia physodes (L.) Nyl. in antropogenic stress conditions. Monit. Środ. Przyr., 13: 51-62. (in Polish)
  • Kar S., Samal A.C., Maity J.P., Santra S.C. 2014. Diversity of epiphytic lichens and their role in sequestration of atmospheric metals. Int. J. Environ. Sci. Technol., 11: 899-908. DOI: 10.1007/s13762-013-0270-8
  • Kłos A. 2007. Lichens – A bioindicator and biomonitor of environment pollution. Chemia, Dydaktyka, Ekologia, Metrologia, 12(1-2): 61-77. (in Polish)
  • Kłos A., Rajfur M., Wacławek M., Wacławek W. 2008. The accumulation of micro- and microelements in mosses and lichens. Ecol. Chem. Eng., 15(3): 397-423. (in Polish)
  • Krawczyk J., Letachowicz B., Klink A., Krawczyk A. 2004. The use of selected plant species and lichen to assess the environmental pollution metals heavy. Zesz. Probl. Post. Nauk Rol., 501: 227-234. (in Polish)
  • Linak W.P., Miller C.A. 2000. Comparison of particle size distributions and element partitioning from the combustion of pulverized coal and residual fuel oil. Air Waste Manage. Assoc., 50: 1532-1544.
  • Ludenius M., Kiisknien J., Tulisalo E. 2010. Metal levels in an epiphytic lichen as indicators of air quality in a suburb of Helsinki, Finland. Boreal Environ. Res., 15: 446-452.
  • Marmor L., Randl ane T. 2007. Effects of road traffic on bark pH and epiphytic lichens in Tallinn. Fol. Cryptog. Estonica, Fasc., 43: 23-37.
  • Nagajyoti P.C., Lee K.D., Sreekanth T.V.M. 2010. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett., 8: 199-216. DOI: 10.1007/s10311-010-0297-8
  • Nimis P.L., Andreussi S., Pittao E. 2001. The performance of two lichen species as bioaccumulators of trace metals. Sci. Total Environ., 275: 43-51.
  • Printzen C. 2010, Lichen systematics: the role of morhological and molecular data to reconstruct phylogenetic relationships. Prog. Bot., 71: 233-275. DOI: 10.1007/978-3-642-02167-1_10
  • Purvis O.W., Dubb in W., Chimonides P.D.J., Jones G.C., Read H. 2008. The multi-element content of the lichen Parmelia sulcata, soil, and oak bark in relation to acidification and climate. Sci. Total Environ., 390: 558-568. DOI: 10.1016/j.scitotenv.2007.10.040
  • Ramsey P.H. 1989. Critical values for Spearman’s rank order correlation. J. Educ. Stat., 14(3): 245-253.
  • Richardson D.H.S. 1995. Metals uptake in lichens. Symbiosis, 18: 119-127.
  • Sawicka-Kapusta K., Zakrzewska M., Bydłoń G., Hajduk J. 2010. Estimation of air pollution in the base stations of the integrated nature monitoring system by heavy metals and sulphur dioxide in 2001-2009 using lichen Hypogymnia physodes. Monit. Środ. Przyr., 11: 63-71.
  • Scerbo R., Ristori T., Possenti L., Lampugnani L., Barale R., Barghigiani C. 2002. Lichen (Xanthoria parietina) biomonitoring of trace element contamination and air quality assessment in Pisa Province (Tuscany, Italy). Sci. Total Environ., 286: 27-40. DOI: 10.1016/S0048- 9697(01)00959-7
  • Stamenković S.S., Mitrović T.LJ., Cvetković V.J., Kristić N.S., Baošić Rada M., Marković M.S., Nikolić N.D., Marković V.LJ., Cvijan M.V. 2013. Biological indication of heavy metal pollution in the areas of Donje valse and Cerje (southeastern Serbia) using epiphytic lichens. Arch. Biol. Sci., Belgrade, 65(1): 151-159. DOI: 10.2298/ABS1301151S
  • Tainio M., Kekkonen J., Nahorski Z. 2010. Impact of airborne particulate matter on human heath: An assessment framework to estimate exposure and adverse heath effect in Poland. Arch. Environ. Prot., 36(1): 95-115.
  • Tarhanen S., Metsärinne S., Holopainen T., Oksanen J. 1999. Membrane permeability response of lichen Bryoria fuscescens to wet deposited heavy metals and acid rain. Environ. Pollut., 104: 121-129.
  • Yang Y., Peterson E., Cambell C. 2001. Accumulation of heavy metals in urban soils and impacts on microorganism. Huan Jing Ke Xue, 22(3): 44-48.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.