Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 2 |

Tytuł artykułu

Influence of cobalt concentration on the growth and development of Dendrobium kingianum Bidwill orchid in an in vitro culture


Treść / Zawartość

Warianty tytułu

Wpływ stężenia kobaltu na wzrost i rozwój storczyka Dendrobium kingianum Bidwill w kulturze in vitro

Języki publikacji



The study investigated the influence of increased cobalt content in urashige and skoog (1962) solid medium on the growth and development of Dendrobium kingianum Bidwill orchid plants. Explants of shoots were used for micropropagation of the orchid plants on MS regeneration medium supplemented with 0.5 mg dm -3 NAA and 1.0 mg dm -3 kinetin. Cobalt (as CoCl 2 · 6H 2 O) was added to all treatments in concentrations of 0.025 (control), 0.625, 1.25 and 2.5 mg dm -3 . The results obtained after eight months showed that treatments with the cobalt chloride in concentrations 0.25-1.25 mg dm -3 did not influence the number of shoots and roots, and the length of shoots of the orchids. The treatment with the cobalt chloride in concentration 0.625 mg dm -3 positively influenced on the length of roots and increment of the fresh weight of plantlets. However, in media with the highest cobalt concentration (2.5 mg dm -3 CoCl 2 · 6H 2 O), a negative influence of the metal on the number of shoots of the orchids was noted. Spectrophotometric analysis (ASA) showed that cobalt accumulation increased in both the shoots and the roots with the increase in the external Co level, whereas iron accumulation in these organs decreased. Cobalt and iron accumulation in the roots was 3-4 times higher than in the shoots.

Słowa kluczowe








Opis fizyczny



  • Department of Plant Biology, University of Life Sciences in Lublin, Szczebrzeska 102, 22-400 Zamosc, Poland


  • Amarasinghe A.A.Y. 2009. Effects of copper sulphate and cobalt chloride on in vitro performances of traditional indica rice (Oryza sativa L.) varieties in Sri Lanka. J. Agric. Sci., 4(3):132-141.
  • Att a-Aly M. A., Shehata N. G., El-Kobb ia T., M. 1991. Effect of cobalt on tomato plant growth and mineral content. Ann. Agric. Sci., Ain Shams Univ., Cairo., 36: 617-624.
  • Alvarez-Pardo V.M., Ferreira G., Nunes V.F. 2006. Seed disinfestations methods for in vitro cultivation of epiphyte orchids from Southern Brazil. Horticultura Brasileira, 24: 217-220.
  • Aziz E. E., Azza A., El-Din E., E.A., Omer E.A. 2010. Influence of zinc and iron on plant growth and chemical constituents of Cymbopogon citratus L. grown in newly reclaimed land. Int. J. Acad. Res., 2(4): 278-283.
  • Blaylock A.D., Davis T. D., Jolly V. D., Walser R. H. 1993. Influence of cobalt and iron on photosynthesis, chlorophyll and nutrient in regreening chlorotic tomatoes and soybeans. J. Plant Nutr., 8: 823-838.
  • Bond G., Hewitt E.J. 1962. Cobalt and the fixation of nitrogen by root nodules of Alnus and Casuarina. Nature, 195: 94-95.
  • Chae S.C., Park S. U. 2012. Improved shoot organogenesis of Echinacea angustifolia DC treated with ethylene inhibitors. Life Sci. J. 9(4): 1725-1728.
  • Chae S.C., Kim H.H., Park S. U. 2012. Ethylene inhibitors enhance shoot organogenesis of gloxinia (Sinningia speciosa). Sci. Word J., DOI: 10.1100/2012/859381. Epub 2012 Oct 17.
  • De Faria R.T., Rodrigues F.N., Oliveira L.V.R., Müller C. 2004. In vitro Dendrobium nobile plant growth and rooting in different sucrose concentrations. Horticultura Brasileira, 22(4): 780-783.
  • Gad N. 2005a. Effect of cobalt on tomato growth, yield and fruit quality. Egypt. J. Appl. Sci., 20(4): 260-270.
  • Gad N. 2005b. Interactive effect of cobalt and salinity on tomato plants. I – Growth and mineral composition as affected by cobalt and salinity. Res. J. Agric. Biol. Sci., 1(3): 261-269.
  • Gad N. 2006. Increasing the efficiency of water consumption through cobalt application in the newly reclaimed soils. J. Appl. Sci. Res. 2(11): 1081-1091.
  • Gad N., Kandil H. 2008. Response of sweet potato (Ipomoea batatas L.) plants to different levels of cobalt. Aust. J. Basic Appl. Sci., 2(4): 949-955.
  • Gad N., Kandil H. 2010. Influence of cobalt on phosphorus uptake, growth and yield of tomato. Agric. Biol. J. North Am., 1(5): 1069-1075.
  • Hunter J.G., Verghano O. 1953. Trace-element toxicities in oat plants. Ann. Appl. Biol., 40: 761-777.
  • Jayakumar K., Jaleel C. A. 2009. Uptake and accumulation of cobalt in plants: a study based on exogenous cobalt in soybean. Bot. Res. Intl., 2 (4): 310-314.
  • Kumar P.P., Lakshmanan P., Thorpe T.A. 1998. Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell. Develop. Biol., 34(2): 94-103.
  • Liu D., Wang W., Zhai L., Jiang W. 1995. Effect of Mg2+, Co2+ and Hg2+ on the nucleus in root tip cells of Allium cepa. Bull. of Environ. Contamination Toxicol., 55: 779-787.
  • Lucena C., Waters B.M., Romera F.J., García M.J., Morales M., Alcántara E., Pérez-Vicente R. 2006. Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. J. Exp. Bot., 57(15): 4145-4154. PMID: 17085755
  • Mohiuddin A.K.M., Chowdhury M.K.U., Abdullah Z.C., Napis S.1995. The influence of cobalt chloride on in vitro shoot proliferation in cucumber (Cucumis sativus L.). Asian Pacific J. Mol. Biol. Biotechnol., 3(4): 332-338.
  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Plant Physiol., 15: 473-497.
  • Palit S., Sharma A. 1994. Effects of cobalt on plants. Bot. Rev., 60(2): 149-181.
  • Prażak R. 2001a. Influence of aluminium from AlCl3 on differentiation and growth of Dendrobium kingianum Bidwill in in vitro conditions. Develop. Plant Soil Sci. Plant Nutrit, 92: 178-179.
  • Prażak R. 2001b. Micropropagation of Dendrobium kingianum Bidwill orchid. Biotechnologia, 2(53): 144-147. (in Polish)
  • Puchooa D. 2004. Comparison of different culture media for the in vitro culture of Dendrobium (Orchidaceae). Int. J. Agri. Biol., 6(5): 884-888.
  • Reddy T. V. 1988. Mode of action of cobalt extending the vase life of cut roses. Sci. Hort., 36: 303-314.
  • Romera F.J., Alcantara E. 1994. Iron-deficiency stress responses in cucumber (Cucumis sativus L.) roots (A possible role for ethylene?). Plant Physiol., 105(4): 1133-1138. PMCID: PMC159441.
  • Samimy C. 1978. Influence of cobalt on soybean hypocotyl growth and its ethylene evolution. Plant Physiol., 62: 1005-1006.
  • Santana-Buzzy N., Iglesias-Andreu L.G., Montalvo-Peniche M. del C., López-Puc G., Barahona-Pérez F. 2006. Improvement of in vitro culturing of habanero pepper by inhibition of ethylene effects. Hort. Sci., 41(2): 405-409.
  • Soontornchainaksaeng P., Chaicharoen S., Sirijuntarut M., Kruatrachue M. 2001. In vitro studies on the effect of light intensity on plant growth of Phaius tanervilliae (Banks ex L’Herit.) Bl. and Vanda coerulea Griff. Scienceasia, 27: 233-237.
  • Trujillo-Moya C., Gisbert C. 2012. The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell Tiss. Organ Cult., 111(1): 41-48.
  • Venkatarayappa T., Tsujita M. J., Murr D. P. 1980. Influence of cobaltous ion (Co2+) on the postharvest behaviour of Samantha roses. J. Amer. Soc. Hort. Sci., 105: 148-151.
  • Waters B.M., Lucena C., Romera F.J., Jester G.G., Wynn A.N., Rojas C.L., Alcántara E., Pérez-Vicente R. 2007. Ethylene involvement in the regulation of the H(+)-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants. Plant Physiol Biochem., 45(5):293-301. PMID: 17468001.
  • Yang S.F., Hoffman N.E. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol., 35(1): 155-189.


Rekord w opracowaniu

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.