PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 57 | 1 |

Tytuł artykułu

Arabidopsis thaliana tolerates iron deficiency more than Thellungiella salsuginea by inducing metabolic changes at the root level

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Several studies have used A. thaliana as a model to identify the physiological and molecular mechanisms underlying iron deficiency tolerance in plants. Here, Arabidopsis thaliana and Thellungiella salsuginea were used to investigate the differential responses to iron deficiency of these two species. Plants were cultivated in hydroponic medium containing 5 or 0 μM Fe, for 10 days. Results showed that rosette biomass was more reduced in T. salsuginea than in A. thaliana when grown on Fe-deficient medium. As a marker for iron deficiency tolerance, the induction of ferric chelate reductase (FCR) and phosphoenolpyruvate carboxylase (PEPC) activities was observed only in A. thaliana roots. In addition, we found that the accumulation of phenolic acids in roots of N1438 ecotype of A. thaliana was stimulated by Fe deficiency. Furthermore, an increase of flavonoids content in the root and exudates was observed under Fe-deficiency in this ecotype. Unlike other abiotic stresses, it appears that iron deficiency effects were more pronounced in Thellungiella than in Arabidopsis. The higher tolerance of the Arabidopsis plant to iron deficiency may be due to the metabolic changes occurring in the roots.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

57

Numer

1

Opis fizyczny

p.44-50,fig.,ref.

Twórcy

autor
  • Unite de Physiologie et de Biochimie de la Tolerance au Sel chez les Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
autor
  • Unite de Physiologie et de Biochimie de la Tolerance au Sel chez les Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
autor
  • Unite de Physiologie et de Biochimie de la Tolerance au Sel chez les Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
autor
  • Unite de Physiologie et de Biochimie de la Tolerance au Sel chez les Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
autor
  • Unite de Physiologie et de Biochimie de la Tolerance au Sel chez les Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia

Bibliografia

  • AL-SHEHBAZ IA, O'KANE SLJ, and PRICE RA. 1999. Generic placement of species excluded from Arabidopsis(Brassicaceae). Novon 9: 296–307.
  • ARGYROUDI-AKOYUNOGLOU JH, and AKOYUNOGLOU G. 1970. Photoinduced changes in the chlorophyll a to chlorophyllb ratio in young bean plants. Plant Physiology 46:247–249.
  • BRESSAN RA, ZHANG C, ZHANG H, HASEGAWA P, BOHNERT H, and ZHU JK. 2001. Learning from the Arabidopsis experience.The next gene search paradigm. Plant Physiology127: 1354–1360.
  • BRIAT JF, and VERT G. 2004. Acquisition et gestion du fer par les plantes. Cahiers Agriculture 13: 183–201.
  • CHANEY RL, BROWN JC, and TIFFIN LO. 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. PlantPhysiology 50: 208–213.
  • CURIE C, and BRIAT JF. 2003. Iron transport and signaling in plants. Annual Review of Plant Biology 54: 183–206.
  • DAKORA FD, and PHILLIPS DA. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments.Plant Soil 245: 35–47.
  • DE NISI P, and ZOCCHI G. 2000. Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under irondeficiency: activity and kinetic characterization. Journalof Experimental Botany 51: 1903–1909.
  • DELL'ORTO M, SANTI S, DE NISI P, CESCO S, VARANINI Z, ZOCCHI G, and PINTON R. 2000. Development of Fe deficiencyresponse in cucumber (Cucumis sativus L.) roots:involvement of plasma membrane H+-ATPase activity.Journal of Experimental Botany 51: 695–701.
  • DEWANTO V, WU X, ADOM KK, and LIU RH. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agriculture and Food Chemistry 50: 3010–3014.
  • GAY AP, and HAUK B. 1994. Acclimation of Lolium temulentum to enhanced carbon dioxide concentration. Journal ofExperimental Botany 45: 1133–1141.
  • HELL R, and STEPHAN UW. 2003. Iron uptake, trafficking and homeostasis in plants. Planta 216: 541–551.
  • HEMM MR, RIDER SD, OGAS J, MURRY DJ, and CHAPPLE C. 2004. Light induces phenylpropanoid metabolism inArabidopsis roots. Plant Journal 38: 765–778.
  • INAN G, ZHANG Q, LI PH, WANG ZL, CAO ZY, ZHANG H, ZHANG CQ, QUIST TM, GOODWIN SM, ZHU JH, SHI HH, DAMSZ B, CHARBAJIT, GONG QQ, MA SS, FREDRICKSEN M, GALBRAITH DW,JENKS MA, RHODES D, HASEGAWA PM, BOHNERT HJ, JOLY RJ, BRESSAN RA, and ZHU JK. 2004. Salt cress. A halophyteand cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiology 135: 1718–1737.
  • JELALI N, M'SEHLI W, DELL'ORTO M, ABDELLY C, GHARSALLI M, and ZOCCHI G. 2010. Changes of metabolic responses todirect and induced Fe deficiency of two Pisum sativumcultivars. Environmental and Experimental Botany 68:238–246.
  • JIN CW, YOU GY, HE YF, TANG C, WU P, and ZHENG SJ. 2007. Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiology 144: 278–285.
  • KANT S, BI YM, WERETILNYK E, BARAK S, and ROTHSTEIN SJ. 2008. The Arabidopsis halophytic relative Thellungiellahalophila tolerates nitrogen limiting conditions by maintaininggrowth, nitrogen uptake, and assimilation. PlantPhysiology 147: 1168–1180.
  • KEILIG K, and MÜLLER JL. 2009. Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings.Botanical Studies 50: 311–318.
  • KSOURI R, M'RAH S, GHARSALLI M, and LACHAÂL M. 2006. Biochemical responses to true and bicarbonate-induced iron deficiency in grapevine genotypes. Journal of Plant Nutrition 29: 305–315.
  • LICHTENTHALER HK. 1988. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods inEnzymology 148: 350–383.
  • LÓPEZ-MILLÁN AF, MORALES F, ANDALUZ S, GOGORCENA Y, ABADÍA A, 6E LAS RIVAS J, and ABADÍA J. 2000. Responses of sugarbeet roots to iron deficiency: changes in carbon assimilationand oxygen use. Plant Physiology 124: 885–897.
  • M'SEHLI W, DELL'ORTO M, DE NISI P, DONNINI S, ABDELLY C, ZOCCHI G, and GHARSALLI M. 2009a. Responses of two ecotypesof Medicago ciliaris to direct and bicarbonateinducediron deficiency conditions. Acta PhysiologiaPlantarum 31: 667–673.
  • MAHMOUDI H, KSOURI R, GHARSALLI M, and LACHAÂL M. 2005. Differences in responses to iron deficiency between two legumes: lentil (Lens culinaris) and chickpea (Cicer arietinum). Journal of Plant Physiology 162: 1237–1245.
  • MSILINI N, ATTIA H, RABHI M, KARRAY N, LACHAÂL M, and OUERGHI Z. 2012. Responses of two lettuce cultivars to iron deficiency.Experimental Agriculture 48: 523–535.
  • OUERGHI Z, CORNIC G, ROUDANI M, AYADI A, and BRULFERT J. 2000. Effect of NaCl on photosynthesis of two wheatspecies (T. durum and T. aestivum) differing in theirsensitivity to salt stress. Journal of Plant Physiology156: 335–340.
  • RABHI M, BARHOUMI Z, KSOURI R, ABDELLY C, and GHARSALLI M. 2007. Interactive effects of salinity and iron deficiency inMedicago ciliaris. Comptes Rendu Biologie 330: 779–788.
  • RÖMHELD V, and MARSCHNER H. 1986. Evidence for a specific uptake system for iron phytosiderophores in roots ofgrass. Plant Physiology 80: 175–180.
  • SCHMIDT W. 1999. Mechanisms and regulation of reductionbased iron uptake in plants. New Phytologist 141: 1–26.
  • SINGLETON VL, and ROSI JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acidreagents. American Journal of Enology and Viticulture16: 144–158.
  • SUSÍN S, ABIÁN J, SÁNCHEZ-BEYES JA, PELEATO ML, ABADIA A, GELPI E, and ABADIA J. 1996. Riboflavin 3'- and 5'-sulphate,two novel flavins accumulating in the roots ofiron-deficient sugar beet (Beta vulgaris). Journal of Biological Chemistry 268: 20958–20965.
  • VOLKOV V, and AMTMANN A. 2006. Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specificroot ion channel features supporting K1/Na1 homeostasisunder salinity stress. Plant Journal 48: 342–353.
  • VOLKOV V, WANG B, DOMINY PJ, FRICKE W, and AMTMANN A. 2004. Thellungiella halophila, a salt-tolerant relative ofArabidopsis thaliana, possesses effective mechanisms todiscriminate between potassium and sodium. Plant Celland Environment 27: 1–14.
  • ZHU JK. 2001. Plant salt tolerance. Trends in Plant Science 6: 66–71.
  • ZOCCHI G, and COCUCCI S. 1990. Fe uptake mechanism in Feefficient cucumber roots. Plant Physiology 92: 908–911.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2a487ca4-f647-4a4e-9638-9739f67ebfdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.