PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | 3 |

Tytuł artykułu

Modelling of ship's trajectory planning in collision situations by hybrid genetic algorithm

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Ship collision-avoidance trajectory planning aims at searching for a theoretical safe-critical trajectory in accordance with COLREGs and good seamanship. In this paper, a novel optimal trajectory planning based on hybrid genetic algorithm is presented for ship collision avoidance in the open sea. The proposed formulation is established based on the theory of the Multiple Genetic Algorithm (MPGA) and Nonlinear Programming, which not only overcomes the inherent deficiency of the Genetic Algorithm (GA) for premature convergence, but also guarantees the practicality and consistency of the optimal trajectory. Meanwhile, the encounter type as well as the obligation of collision avoidance is determined according to COLREGs, which is then considered as the restricted condition for the operation of population initialization. Finally, this trajectory planning model is evaluated with a set of test cases simulating various traffic scenarios to demonstrate the feasibility and superiority of the optimal trajectory

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

3

Opis fizyczny

p.14-25,fig.,ref.

Twórcy

autor
  • Dalian Maritime University, Linghai road, 116026 Dalian, China
autor
  • Dalian Maritime University, Linghai road, 116026 Dalian, China
autor
  • Dalian Maritime University, Linghai road, 116026 Dalian, China
autor
  • Dalian Maritime University, Linghai road, 116026 Dalian, China

Bibliografia

  • 1. Bazarra M.S., Shetty L.M.: Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, New York, 1979, pp. 1-360
  • 2. Benjamin M. R., Curcio J. A.: COLREGS-based navigation of autonomous marine vehicles. Autonomous Underwater Vehicles IEEE/OES. IEEE, 2004, pp. 32-39
  • 3. Burmeister, H.C., Bruhn W. and Porathe T.: Autonomous unmanned merchant vessel and its contribution towards the e-navigation implementation. the MUNIN perspective. Ocean Engineering. 1, 2014, pp. 1-13
  • 4. Goldberg D.: Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, Reading, MA, 1989
  • 5. Hong X., Harris C. J., Wilson P. A.: Autonomous ship collision free trajectory navigation and control algorithms. Proceedings of 7th IEEE International Conference on Emerging Technologies and Factory Automation, 1999, pp. 923–929
  • 6. Hwang C. N., Yang J. M., Chiang C. Y.: The design of fuzzy collision-avoidance expert system implemented by H (subscript∞)-autopilot. Journal of Marine Science and technology, 9(1), 2001, pp. 25-37
  • 7. Hwang C.N.: The integrated design of fuzzy collision-avoidance and h1- autopilots on ships. The Journal of Navigation, 55 (1), 2002, pp.117–136
  • 8. Ito M., Zhang F. and Yoshida N.: Collision avoidance control of ship with genetic algorithm. Proceedings of 1999 IOOO international conference on control applications, 1999. pp. 1791-1796
  • 9. Jokioinen E.: Remote and autonomous ships: the next steps. www.rolls-royce.com/marine, 2016
  • 10. Lazarowska A.: Ship’s trajectory planning for collision avoidance at sea based on ant colony optimization. Journal of Navigation, 68(2), 2015, pp. 291-307
  • 11. Lee Y., Kim Y. G.: A collision avoidance system for autonomous ship using fuzzy relational products and COLREGs. Proceedings of Intelligent Data Engineering and Automated Learning–IDEAL: 5th International Conference, Exeter, UK. 25–27 August, 2004, pp. 247-252
  • 12. Li, L.N., Yang S.H., Cao B.G. and Li, Z.F.: A summary of studies on the automation of ship Collision Avoidance Intelligence. Journal of Jimei University, China, 11(2), 2006, pp. 199-192
  • 13. Liu, Y., Bucknall R.: Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean Engineering, 97, 2015, pp. 126–144
  • 14. Miele, A., Wang T., Chao C. S., et al.: Optimal control of a ship for collision avoidance maneuvers. Journal of Optimization Theory and Applications, 103(3), 1999, pp. 495–519
  • 15. Perera L. P., Carvalho J. P., Soares C. G.: Fuzzy logic based decision making system for collision avoidance of ocean navigation under critical collision conditions. Journal of Marine Science and Technology, 16(1), 2011, pp. 84-99
  • 16. Perera L. P., Carvalho J. P., Soares C. G.: Intelligent ocean navigation and fuzzy-bayesian decision action formulation. IEEE Journal of Oceanic Engineering, 37(2), 2012, pp. 204-219
  • 17. Smierzchalski R.: Evolutionary trajectory planning of ships in navigation traffic areas. Journal of Marine Science and Technology. 4(1), 1999, pp. 1-6
  • 18. Statheros T., Howells G. and McDonald-Maier K.: Autonomous ship collision avoidance navigation concepts, technologies and techniques. Journal of Navigation, 61, 2008, pp. 129-142
  • 19. Sun L. C.: The Model of close quarter situation. Proceedings of 96’ANTI-COLLISION, 1996
  • 20. Szlapczynski, R.: A unified measure of collision risk derived from the concept of a ship domain. Journal of Navigation. 59, 2006, pp. 477-490
  • 21. Szlapczynski, R.. A new method of ship routing on raster grids, with turn penalties and collision avoidance. Journal of Navigation, 59(1), 2006, pp. 27–42
  • 22. Szlapczynski, R.: Evolutionary sets of safe ship trajectories: a new approach to collision avoidance. Journal of Navigation, 64(1), 2011, pp.169-181
  • 23. Szlapczynski R., Szlapczynska J.: On evolutionary computing in multi-ship trajectory planning. Applied Intelligence, 37(2), 2012, pp. 155-174
  • 24. Szlapczynski R., Szlapczynska J.: Customized crossover in evolutionar y sets of safe ship trajectories. Internationa l Journal of Applied Mathematics and Computer Science, 22(4), 2012, pp. 999-1009
  • 25. Szłapczynski R.: Evolutionary sets of safe ship trajectories with speed reduction manoeuvres within traffic separation schemes. Polish Maritime Research, 21(1), 2014, pp. 20-27
  • 26. Tam C., Bucknall R., Greig A.: Review of collision avoidance and path planning methods for ships in close range encounters. Journal of Navigation. 62, 2009, pp. 455-476
  • 27. Tam C., Bucknall R.: Collision risk assessment for ships. J. Mar. Sci. Technol. 15, 2010, pp. 257-270
  • 28. Tam C. K., Bucknall R.: Path-planning algorithm for ships in close-range encounters. Journal of Marine Science and Technology, 15(4), 2010, pp. 395-407
  • 29. Tam C. K., Bucknall R.: Cooperative path planning algorithm for marine surface vessels. Ocean Engineering, 57, 2013, pp. 25–33
  • 30. Tsou M.C., Hsueh C.K.: The study of ship collision avoidance route planning by ant colony algorithm. Journal of Marine Science and Technology, 2010, 18(5), 2010, pp. 74 6 -756.
  • 31. Tsou, M. C., Kao S. L., Su C. M.: Decision support from genetic algorithms for ship collision avoidance route planning and alerts. Journal of Navigation, 63(1), 2010, pp. 167–182
  • 32. Tsou M.C.: Multi-target collision avoidance route planning under an ECDIS framework. Ocean Engineering. 121, 2016, pp. 268-278
  • 33. Xu Q. Y.: Collision avoidance strategy optimization based on danger immune algorithm. Computers & Industrial Engineering, 76, 2014, pp. 268-279
  • 34. Xue Y., Clelland D., Lee B. S., et al.: Automatic simulation of ship navigation. Ocean Engineering, 38(17), 2011, pp. 2290–2305
  • 35. Zhang J, F., Zhang D., Yan X., et al.: A distributed anti-collision decision support formulation in multi-ship encounter situations under COLREGs. Ocean Engineering, 105, 2015, pp. 336-348. .

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2a302b33-73ce-4752-86ad-9f5ec3b54a59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.