Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 05 |

Tytuł artykułu

The effect of arabinogalactan proteins on regeneration potential of juvenile citrus explants used for genetic transformation by Agrobacterium tumefaciens

Warianty tytułu

Języki publikacji



A possible role of arabinogalactan proteins in control of shoot regeneration from stem explants of two citrus cultivars, Carrizo citrange and ‘Duncan’ grapefruit, was investigated. Treatment of explants with (b-D-Glc)3 Yariv phenylglycoside, able to bind specifically to AGPs, led to a decrease of cumulative regeneration potential of both Carrizo citrange and ‘Duncan’ grapefruit. For Carrizo, lower cumulative regeneration potential on (b-D-Glc)3 Yariv phenylglycoside-treated explants was the result of both lower number of shoots on the explants that had shoots (explant regeneration potential) and decreased percentage of explants with shoots. In the case of ‘Duncan’, treatment with (b-D-Glc)3 Yariv phenylglycoside reduced cumulative regeneration potential only by lowering the percentage of explants with shoots, but it did not affect the number of shoots on the explants with shoots. Citrus explants treated with (a-D-Man)3 Yariv phenylglycoside, which does not bind AGPs, responded similarly to untreated explants. Transformability of cells on the cut ends of explants was also lower for both cultivars following the treatment of explants with (b-D-Glc)3 Yariv phenylglycoside. Our data suggest that arabinogalactan proteins play important role in processes controlling differentiation and genetic transformation of citrus cells by Agrobacterium.

Słowa kluczowe








Opis fizyczny



  • Horticultural Sciences Department, Citrus Research and Education Center, University of Florida/IFAS, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
  • Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
  • Horticultural Sciences Department, Citrus Research and Education Center, University of Florida/IFAS, 700 Experiment Station Road, Lake Alfred, FL 33850, USA


  • Borderies G, le Bechec M, Rossignol M, Laffitte C, Le Deunff E, Beckert M, Dumas C, Matthys-Rochon E (2004) Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development. Eur J Cell Biol 83:205–212. doi:10.1078/0171-9335-00378
  • Bossy A, Blaschek W, Classen B (2009) Characterization and immunolocalization of arabinogalactan-proteins in roots of Echinacea purpurea. Planta Med 75:1526–1533. doi:10.1055/s-0029-1185801
  • Dutt M, Grosser JW (2010) An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus. Plant Cell Rep 29:1251–1260
  • Ellis M, Egellund J, Schultz CB, Bacic A (2010) Arabinogalactanproteins: key regulators at the cell surface? Plant Physiol 153:403–419. doi:10.1104/pp.110.156000
  • Frühling M, Hohnjec N, Schröder G, Küster H, Pühler A, Perlick AM (2000) Genomic organization and expression properties of the VfNOD5 gene from broad bean (Vicia faba L.). Plant Sci 155:169–178. doi:10.1016/S0168-9452(00)00216-8
  • Gao M, Showalter AM (1999) Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. Plant J 19:321–331. doi:10.1046/j.1365-313X.1999.00544.x
  • Gaspar Y, Johnson KL, McKenna JA, Bacic A, Schultz CJ (2001) The complex structures of arabinogalactan-proteins and the journey towards understanding function. Plant Mol Biol 47:161–176. doi:10.1023/A:1010683432529
  • Gaspar Y, Nam J, Schultz CJ, Lee L-Y, Gilson PR, Gelvin SB, Bacic A (2004) Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of Agrobacterium transformation. Plant Physiol 135:2162–2171. doi:10.1104/pp.104.045542
  • Göllner EM, Blaschek W, Classen B(2010) Structural investigations on arabinogalactan-protein from wheat, isolated with Yariv reagent. J Agric Food Chem 58:3621–3626. doi:10.1021/jf903843f
  • Göllner EM, Ichinose H, Kaneko S, Blaschek W, Classen B (2011) An arabinogalactan-protein from whole grain of Avena sativa L. belongs to the wattle-blossom type of arabinogalactan-proteins. J Cereal Sci 53:244–249. doi:10.1016/j.jcs.2011.01.004
  • Gutie´rrez-E MA, Luth D, Moore GA (1997) Factors affecting Agrobacterium-mediated transformation in citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 16:745–753. doi:10.1007/s002990050313
  • Hu Y, Qin Y, Zhao J (2006) Localization of an arabinogalactan protein epitope and the effects of Yariv phenylglycoside during zygotic embryo development of Arabidopsis thaliana. Protoplasma 229:21–31. doi:10.1007/s00709-006-0185-z
  • Kreuger M, van Holst GJ (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189:243–248. doi:10.1007/BF00195083
  • Li DD, Shi W, Deng XX (2003) Factors influencing Agrobacteriummediated callus transformation of Valencia sweet orange (Citrus sinensis) containing pTA29-barnase gene. Tree Physiol 23: 1209–1215
  • Mahendran T, Williams PA, Phillips GO, Al-Assaf S, Baldwin TC (2008) New insight into the structural characteristics of the arabinogalactan-protein (AGP) fraction of gum arabic. J Agric Food Chem 56:9269–9276. doi:10.1021/jf800849a
  • Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291. doi:10.1016/S0074-7696(08)62118-X
  • Omar AA, Song WY, Grosser JW (2007) Introduction of Xa21, a Xanthomonas-resistance gene from rice, into ‘Hamlin’ sweet orange [Citrus sinensis (L.) Osbeck] using protoplast–GFP co-transformation or single plasmid transformation. J Hort Sci Biotech 82:914–923
  • Orbović V, Grosser JW (2006) Citrus: sweet orange (Citrus sinensis L. Osbeck ‘Valencia’) and Carrizo citrange [Citrus sinensis (L.) Osbeck 9 Poncirus trifoliata (L.) Raf.]. In: Wang K (ed) Agrobacterium protocol—methods in molecular biology. Humana Press, Inc., Totowa, pp 177–189
  • Orbović V, Pasquali G, Grosser JW (2007) A GFP-containing binary vector for Agrobacterium tumefaciens-mediated plant transformation. (ISHS) Acta Hort 738:245–253
  • Orbović V, Ćalović M, Grosser JW (2008) The effect of media composition on the efficiency of Agrobacterium-mediated transformation of citrus. Hort Sci 43(4):1204
  • Park MH, Suzuki Y, Chono M, Knox JP, Yamaguchi I (2003) CsAGP1, a gibberellins responsive gene from cucumber hypocotyls, encodes a classical arabinogalactan-protein and is involved in stem elongation. Plant Physiol 131:1450–1459. doi: 10.1104/pp.015628
  • Peña L, Perez RM, Cervera M, Juarez JA, Navarro L (2004) Early events in Agrobacterium-mediated genetic transformation of citrus explants. Ann Bot 94:67–74. doi:10.1093/aob/mch117
  • Qi W, Fong C, Lamport DTA (1991) Gum arabic glycoprotein is a twisted hairy rope, a new model based on O-galactosylhydroxyproline as the polysaccharide attachment site. Plant Physiol 96:848–855
  • Rodriguez A, Cervera M, Peris JE, Peña L (2008) The same treatment for transgenic shoot regeneration elicits the opposite effect in mature explants from two closely related sweet orange (Citrus sinensis (L.) Osb.) genotypes. Plant Cell Tissue Organ Cult 93:97–106. doi:10.1007/s11240-008-9347-3
  • Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161. doi:10.1146/annurev.arplant.58.032806.103801
  • Serpe MD, Nothnagel EA (1994) Effect of Yariv phenylglycosides on Rosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta 193:542–551. doi:10.1007/BF02411560
  • Shina S, Bandyopadhyay SS, Shruti S, Gosh D, Chatterjee UR, Saha S, Gohsal PK, Ray B (2011) Structural characteristics, fluorescence quenching and antioxidant activity of the arabinogalactan protein-rich fraction from senna (Cassia angustifolia) leaves. Food Sci Biotechnol 20(4):1005–1011. doi:10.1007/s10068-011-0138-y
  • Steinhorn G, Sims IM, Carnachan SM, Carr A, Schlothauer R (2011) Isolation and characterisation of arabinogalactan-proteins from New Zealand kanuka honey. Food Chem 128(4):949–956. doi: 10.1016/j.foodchem.2011.03.124
  • Sweet DP, Shapiro RH, Albersheim P (1975) Quantitative analysis by various GLC response-factor theories for partially methylated and partially ethylated alditol acetates. Carbohydr Res 40:217–225. doi:10.1016/S0008-6215(00)82604-X
  • Tang X-C, He Y-Q, Wang Y, Sun M-X (2006) The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. J Exp Bot 57:2639–2650. doi:10.1093/jxb/erl027
  • Tomlinson A, Fuqua C (2009) Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. Curr Opin Microbiol 12:708–714. doi:10.1016/j.mib.2009.09.014
  • Tryfona A, Liang H-C, Kotake T, Kaneko S, Marsh J, Ichinose H, Lovegrove A, Tsumuraya Y, Shewry PR, Stephens E, Dupree P (2010) Carbohydrate structural analysis of wheat flour arabinogalactan protein. Carbohydr Res 345(18):2648–2656. doi: 10.1016/j.carres.2012.09.018
  • Valnes K, Brandtzaeg P (1985) Retardation of immunofluorescence fading during microscopy. J Histochem Cytochem 33:755–761. doi:10.1177/33.8.3926864
  • van Buuren ML, Maldonado-Mendoza IE, Trieu AT, Blaylock LA, Harrison MJ (1999) Novel genes induced during arbuscular mycorrhizal (AM) symbiosis formed between Medicago trunculata and Glomus versiforme. Mol Plant Microbe Interact 12:171–181. doi:10.1094/MPMI.1999.12.3.171
  • van Hengel AJ, Roberts K (2002) AtAGP30, an arabinogalactanprotein in the cell wall of the primary roots, plays a role in root regeneration and seed germination. Plant J 36:256–270. doi: 10.1046/j.1365-313X.2003.01874.x
  • van Holst GJ, Clarke AE (1985) Quantification of arabinogalactanprotein in plant extracts by single radial gel diffusion. Anal Biochem 148:446–450. doi:10.1016/0003-2697(85)90251-9
  • Wiśniewska E, Majewska-Sawka A (2007) Arabinogalactan-proteins stimulate the organogenesis of guard cell protoplast-derived callus in sugar beet. Plant Cell Rep 26:1457–1467. doi:10.1007/s00299-007-0348-1
  • Xie F, Williams A, Edwards A, Downie JA (2012) A plant arabinogalactan-like glycoprotein promotes a novel type of polar surface attachment by Rhizobium leguminosarum. Mol Plant Microbe Interact 25(2):250–258. doi:10.1094/MPMI-08-11-0211
  • Yu C, Shu H, Chen C, Deng Z, Ling P, Gmitter FG (2002) Factors affecting the efficiency of Agrobacterium-mediated transformation in sweet orange and citrange. Plant Cell Tissue Organ Cult 71:147–155. doi:10.1023/A:1019983107509


rekord w opracowaniu

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.