Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 17 | 1 |

Tytuł artykułu

The in vitro effect of commercially available noble metal nanocolloids on the splenocyte proliferative response and cytokine production in mice


Treść / Zawartość

Warianty tytułu

Języki publikacji



Noble metal nanoparticles, currently among the most popular types of nanomaterials, are capable of penetrating through biological barriers once they enter a living organism. There, they can permeate into organs possessing the reticuloendothelial system, such as the spleen. The objective of this study was to determine the effect of commercial nanocolloids of noble metals (silver, gold and copper), recommended by the manufacturer as dietary supplements, on the in vitro viability, proliferative activity and production of cytokines (IL-1β, IL-2, IL-6, IL- 10 and TNF-α) by mouse splenocytes. All of the analyzed colloids had some effect on the activity of mouse splenocytes. Silver colloid was characterized by high toxicity - concentrations of 1.25 ppm and above substantially depressed the viability of cells as well as their proliferative activity and ability to synthesize cytokines. The other two colloids were far less toxic than nanosilver, although their non-toxic concentrations had a significant effect on the production of cytokines by mitogen activated splenocytes. The colloid of gold decreased the level of IL-2, and the colloid of copper caused an increase in IL-2, IL6 and Il-10. At the same time, copper colloid alone induced the synthesis of IL-1β in mitogen unstimulated cells. The results indicate that colloids of noble metals are capable of affecting the activity of immunocompetent cells in important peripheral organs of the immune system.

Słowa kluczowe








Opis fizyczny



  • Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland


  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163: 109-120.
  • Cohen D, Soroka Y, Ma’or Z, Oron M, Portugal-Cohen M, Brégégére FM, Berhanu D, Valsami-Jones E, Hai N, Milner Y (2013) Evaluation of topically applied copper (II) oxide nanoparticle cytotoxicity in human skin organ culture. Toxicol In Vitro 27: 292-298.
  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1: 325-327.
  • Dinarello CA (2000) Proinflammatory cytokines. Chest 118: 503-508.
  • Downs TR, Crosby ME, Hu T, Kumar S, Sullivan A, Sarlo K, Reeder B, Lynch M, Wagner M, Mills T, Pfuhler S (2010) Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not. Mutat Res-Gen Tox En 745: 38-50.
  • Foldbjerg R, Olsen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190: 156-162.
  • Greulich C, Diendorf J, Gessmann J, Simon T, Habijan T, Eggeler G, Schildhauer TA, Epple M, Köller M (2011) Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater 7: 3505-3514.
  • Lan RY, Selmi C, Gershwin ME (2008) The regulatory, inflammatory, and T cell programming roles of interleukin-2 (IL-2). J Autoimmun 31: 7-12.
  • Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost-de Jong A, Noorlander CW, Van Eijkeren JC, Geertsma RE, De Jong WH (2010) The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31: 8350-8361.
  • Małaczewska J (2010) The in vitro effect of silver nanoparticles on the viability and proliferative response of mice peripheral blood mononuclear cells and splenocytes. Med Weter 66: 847-851.
  • Marttnez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Vanden Hoek A, Shnchez EM, Reiner NE, Gaynor EC, Pryzdial EL, Conway EM, Orrantia E, Ruiz F, Av-Gay Y, Bach H (2012) Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine 8: 328-336.
  • Mitra S, Keswani T, Ghosh N, Goswami S, Datta A, Das S, Maity S, Bhattacharyya A (2013) Copper induced immunotoxicity promote differential apoptotic pathways in spleen and thymus. Toxicology 306: 74-84.
  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63.
  • Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117: 1162-1172.
  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010a) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30: 162-168.
  • Park EJ, Yi J, Kim Y, Choi K, Park K (2010b) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24: 872-878.
  • Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32: 9810-9817.
  • Pelkonen KH, Heinonen-Tanski H, Hαnninen OO (2003) Accumulation of silver from drinking water into cerebellum and musculus soleus in mice. Toxicology 186: 151-157.
  • Santoro CM, Duchsherer NL, Grainger DW (2007) Antimicrobial efficacy and ocular cell toxicity from silver nanoparticles. Nanobiotechnology 3: 55-65.
  • Shin SH, Ye MK, Kim HS, Kang HS (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7: 1813-1818.
  • Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, Moch H, Stark WJ (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197: 169-174.
  • Takenaka S, Karg E, Moller W, Roth C, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2000) A morphologic study on the fate of ultrafine silver particles: distribution pattern of phagocytized metallic silver in vitro and in vivo. Inhal Toxicol 12: 291-299.
  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109 Suppl 4: 547-551.
  • Yang EJ, Kim S, Kim JS, Choi IH (2012) Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials 33: 6858-6867.
  • Yen HJ, Hsu SH, Tsai CL (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5: 1553-1561.
  • Zhang XD, Wu HY, Wu D, Wang YY, Chang JH, Zhai ZB, Meng AM, Liu PX, Zhang LA, Fan FY (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomedicine 5: 771-781.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.