Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 18 | 5 |

Tytuł artykułu

The effects of 2,4,5-trichlorophenol on some antioxidative parameters and the activity of glutathione S-transferase in reed canary grass leaves (Phalaris arudinacea)

Warianty tytułu

Języki publikacji



It is known that trichlorophenols may provoke free radical formation, leading to oxidative stress in living organisms, but no effort has been undertaken to evaluate oxidative changes in plants exposed to 2,4,5- trichlorophenol (2,4,5-TCP) that commonly exists in a soil environment. In this work the effect of 2,4,5-TCP on selected parameters of an antioxidative system, the content of hydrogen peroxide and the activity of glutathione S-transferase in the leaves of reed canary grass (Phalaris arudinacea), has been investigated. An increase in the content of total and reduced forms of glutathione and ascorbate, as well as free phenols concentrations, was shown. Moreover, a rise in the activities of catalase, guaiacol peroxidase, and glutathione S-transferase along with arisen content of hydrogen peroxide was observed. The obtained results showed that oxidative stress was provoked in the examined plants that had been exposed to 2,4,5-trichlorophenol.

Słowa kluczowe








Opis fizyczny



  • Department of Environmental Pollution Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
  • Department of Environmental Pollution Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland


  • 1. DAUBARAS D. L., SAIDO K., CHAKRABARTY A. Purification of hydrochinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichloro-phenoxyacetic acid metabolism by Burkholderia cepacia AC 1100. Appl. Environ. Microbiol. 62, 4276, 1996.
  • 2. CERNAKOWA M., ZEMANOVICOVA A. Microbial activity of soil contaminated with chlorinated phenol derivatives. Fol. Microbiol. 43, 411, 1998.
  • 3. SU Y., ZHU G. Bioconcentration of atrazine and chlorophenols into roots and shoots of rice seedlings. Environ. Poll. 139, 32, 2006.
  • 4. ARAUJO B., DEC J., BOLLAG J., PLETSCH M. Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare. Chemosphere. 63, 642, 2006.
  • 5. BLOKHINA O., VIROLAINEN E., FAGERSTED K. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179, 2003.
  • 6. ROMERO-PUERTAS M., MCCARTHY I., GOMEZ M., SANDALIO M., CORPAS F., DEL RIO L., PALMA J. Reactive oxygen species-mediated enzymatic systems involved in the oxidative action of 2,4-dichlorophenoxyacetic acid. Plant Cell Environ. 27, 1135, 2004.
  • 7. BUKOWSKA B., MICHAŁOWICZ J., KROKOSZ A., SICIŃSKA P. Comparison of the effect of phenol and its derivatives on protein and free radical formation In human erythrocytes (in vitro). Blood Cells Mol. Dies. 39, 238, 2007.
  • 8. DUCHNOWICZ P., KOTER M. Damage to the ertthrocyte membrane caused by chlorophenoxyacetic herbicides. Cell. Mol. Biol. Let. 8, 25, 2003.
  • 9. IVANOV S., ALEXIEVA V., KARNOV N. Cumulative effect of low and high atrazine concentrations on Arabidopsis thaliana plants. Russ. J. Plant Physiol. 52, 213, 2005.
  • 10. PEIXOTO F., LARANJO-GOMES J., VINCENTE J., MADEIRA V. Comparative effect of the herbicides dicamaba, 2,4-D and paraquat on non-green potato tuber calli. J. Plant Physiol. 165, 1125, 2008.
  • 11. ZABALZA A., GASTON S., SANDALIO L., RIO A., ROYUELA M. Oxidative stress is not related to the mode of action of herbicides that inhibit acetolactate synthase. Environ. Exp. Bot. 59, 150, 2007.
  • 12. MARCHIOSI M., FERRANESE L., BINNI A., FERNANDES G., FERRO P., FERRARESE-FILHO O. Glyphosateinduced metabolic changes in susceptible and glyphosateresistant soybean (Glycine max L.) roots. Pest. Bioch. Physiol. 93, 28, 2009.
  • 13. ALLA N., HASSAN M. Changes of antioxidant levels in two maize lines following atrazine treatments. Plant Physiol. Biochem. 44, 202, 2006.
  • 14. ASADA K. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601, 1999.
  • 15. TAUSZ T., ŠIRCELJ H., GRILL D. The glutathione system as a stress marker in plant ecophysiology: is a stressresponse concept valid? J. Exp. Bot. 55, 1955, 2004.
  • 16. EDWARDS R., DIXON D. Metabolism of natural and xenobiotic substrates by the plant glutathione S-transferase superfamily. Ecol. Stud. 170, 17, 2004.
  • 17. EDWARDS R., COLE D. Glutathione transferases in wheat (Triticum) species with activity toward fenoxaprop-ethyl and other herbicides. Pest. Biochem. Physiol. 54, 96, 1995.
  • 18. ANDREWS CH., CUMMINS I., SKIPSEY M., GRUNDY N., JYSON I., TOWNSON J., EDWARDS R. Purification and characterization of a family of glutathione transferases with roles in herbicide detoxification in soybean (Glycine max L.); selective enhancement by herbicides and herbicide safeners. Pest. Biochem. Physiol. 82, 205, 2005.
  • 19. MESNER B., BOLL M. Cell suspension cultures of spruce (Picea abies): inactivation of extracellular enzymes by fungal elicitor-induced transient release of hydrogen peroxide. Plant Cell Tissue Org. Cult. 39, 69, 1994.
  • 20. AEBI H. Catalase in vitro. Methods Enzym. 105, 121, 1984.
  • 21. OKAMURA M. An improved method for determination of L-ascorbic acid and L-dehydro-ascorbic acid in blood plasm. Clin. Chim. Acta. 103, 259, 1980.
  • 22. GRIFFITH O. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106, 207, 1980.
  • 23. NAVARI-IZZO F., IZZO R. Induction of enzyme activities and antioxidant production in barley plants as a result of SO₂ fumigation. Plant Sci. 96, 31, 1994.
  • 24. BRADFORD M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248, 1976.
  • 25. MOSKOVA I., TODOROVA., ALEXIEVA V., IVANOV S., SERGIEV I. Effect of exogenous hydrogen peroxide on enzymatic and nonenzymatic antioxidants in leaves of young pea leaves treated with paraquat. Plant Growth Reg. 57, 193, 2009.
  • 26. TESSIERE H., VERNET G. Is the ‘Dinuron Effect’ due to herbicide strengthening of autooxidative defences of Lemna minor? Pest. Biochem. Physiol. 66, 153, 2000.
  • 27. NOCTOR G., FOYER CH. Ascorbate and glutathione keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol.. 49, 249, 1998.
  • 28. ZHAO F., ZHANG H. Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Chemosphere. 86, 349, 2006.
  • 29. WENDEHENNE D., DURER J., CHEN Z., KLESSING F. Benzothiadiazole is an inducer of plant defences inhibits catalase and ascorbate peroxidase. Phytochem. 47, 651, 1998.
  • 30. GRASKOVA A., ROMANENKO S., VLADIMIROVA S., KOLESNICHENKO A. Changes in peroxidase activity during potato rot infection. Russ. J. Plant Physiol. 51, 476, 2004.
  • 31. HERMAN B., BICZAK R., GURGUL E. Effect of 1,10-phenanthroline on peroxidase and catalase activity and chlorophyll, sugar, and ascorbic acid contents. Biol. Plant. 41, 607, 1998.
  • 32. ROY S., IHANTOLA R., HANNINEN O. Peroxidase activity in lake macrophytes and its relation to pollution tolerance. Environ. Exp. Bot. 32, 457, 1992.
  • 33. PASQUALINI V., ROBLES C., GARCINO S., GREFF S., BOUSQUET-MELOU A., BONIN G. Phenolic compounds content in Pinus halepensis Mill. needles: a bioindicator of air pollution. Chemosphere. 52, 239, 2003.
  • 34. PENNYCOOKE J., COX S., STUUSHNOFF C. Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia hybrida). Environ. Exp. Bot. 53, 225, 2005.
  • 35. PIGNOCCHI C., FOYER CH. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr. Opin. Plant Biol. 6, 379, 2003.
  • 36. NOCTOR G., ARISI A., JOUANIN L., KUNERT K., RENNENBERG H., FOYER C. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 49, 623, 1998.
  • 37. NOCTOR G., ARISI A., JUANIN L., VALADIER M., ROUX Y., FOYER C. The role of glycine in determining the rate of glutathione synthesis in poplar. Possible implications for glutathione production during stress. Physiol. Plant. 100, 225, 1997.
  • 38. READE J., COBB A. New, quick tests for herbicide resistance in black-grass (Alopecurus myosurroides Huds) based on increased glutathione S-transferase activity and abundance. Pest. Manag. Sci. 58, 26, 2001.
  • 39. MARSS K. The functions and regulations of glutathione Stransferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 127, 1996.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.